Skip to main content

Advertisement

Log in

Secondary succession in alvar grasslands – do changes in vascular plant and cryptogam communities correspond?

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Although bryophytes and lichens are frequently vital components of aboveground communities, their interrelationships with vascular plant communities are poorly known. We addressed small-scale covariation of vascular plant and cryptogam (bryophytes and lichens) communities during secondary succession from abandoned gravel pit towards thin soil calcareous (alvar) grassland communities. The cover, richness and diversity of vascular plants, bryophytes and lichens were studied. Whereas vascular plants showed the fastest successional dynamics in terms of richness, bryophytes showed a fast successional dynamic in terms of cover and diversity; the establishment of lichens was the slowest. THe cover, richness and diversity of different life forms changed concurrently. There were significant associations among the species composition of all life forms considered. The strongest relationship was found between lichens and vascular plants in mature stages. We conclude that alvar grasslands are certainly an example of a community in which the association between the vascular plant and the cryptogam communities may influence the overall vegetation succession, and the strength of this association increases during secondary succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barkman JJ (1958) Phytosociology and ecology of cryptogamic epiphytes: Including a taxonomic survey and description of their vegetation units in Europe. Van Gorcum, Assen, The Netherlands

    Google Scholar 

  • Bartels SF, Chen HYH (2013) Interactions between overstorey and understorey vegetation along an overstorey compositional gradient. J Veg Sci 24:543–552

    Article  Google Scholar 

  • Baskin C, Baskin J (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Belnap J (2003) Comparative structure of physical and biological soil crusts. In Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management. Springer Berlin Heidelberg, pp 177–191

    Chapter  Google Scholar 

  • Belnap J, Harper KT (1995) Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants. Arid Soil Res Rehab 9:107–115

    Article  CAS  Google Scholar 

  • Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, Cadotte M, Chu C, Cleland EE, Crawley MJ, Daleo P, Damschen EI, Davies KF, De Crappeo NM, Du G, Firn J, Hautier Y, Heckman RW, Hector A, HilleRisLambers J, Iribarne O, Klein JA, Knops JMH, La Pierre KJ, Leakey ADB, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Mortensen B, O'Halloran LR, Orrock JL, Pascual J, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Williams RJ, Wragg PD, Wright JP, Yang LH (2014) Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517–520

    Article  CAS  PubMed  Google Scholar 

  • Bruun HH, Moen J, Virtanen R, Grytnes J-A, Oksanen L, Angerbjörn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46

    Article  Google Scholar 

  • Büdel B, Colesie C, Green TGA, Grube M, Lázaro Suau R, Loewen-Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho L, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the soil crust international project (SCIN). Biodivers & Conservation 23:1639–1658

    Article  Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Gwynn Jones D, Jonasson S, Chapin FS, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R (2001) Global change and arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–994

    Article  Google Scholar 

  • Crowley PH, Davis HM, Ensminger AL, Fuselier LC, Kasi Jackson J, Nicholas McLetchie D (2005) A general model of local competition for space. Ecol Letters 8:176–188

    Article  Google Scholar 

  • Dettweiler-Robinson E, Bakker JD, Grace JB (2013) Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. J Arid Environm 94:96–104

    Article  Google Scholar 

  • Eldridge D, Greene R (1994) Microbiotic soil crusts – a review of their roles in soil and ecological processes in the rangelands of Australia. Soil Res 32:389–415

    Article  Google Scholar 

  • Garcia de Leon D, Moora M, Opik M, Neuenkamp L, Gerz M, Jairus T, Vasar M, Bueno CG, Davison J, Zobel M (2016) Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 92:fiw097

  • Gornall JL, Woodin SJ, Jonsdottir IS, van der Wal R (2011) Balancing positive and negative plant interactions: how mosses structure vascular plant communities. Oecologia 166:769–782

    Article  PubMed  Google Scholar 

  • Grytnes JA, Heegaard E, Ihlen PG (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecologica 29:241–246

    Article  Google Scholar 

  • Hart SA, Chen HYH (2006) Understory vegetation dynamics of North American boreal forests. Crit Rev Pl Sci 25:381–397

    Article  Google Scholar 

  • Herben T, Wagnerová M (2004) Effects of bryophyte removal and fertilization on established plants in a mountain grassland: changes of a fine-scale spatial pattern. Lindbergia 29:33–39

    Google Scholar 

  • Honegger R (2008) Morphogenesis. In Nash T H (ed) Lichen biology. Cambridge University Press, Cambridge, UK, pp 69–93

    Chapter  Google Scholar 

  • Ingerpuu N, Kupper T (2007) Response of calcareous grassland vegetation to mowing and fluctuating weather conditions. J Veg Sci 18:141–146

    Article  Google Scholar 

  • Ingerpuu N, Liira J, Pärtel M (2005) Vascular plants facilitated bryophytes in a grassland experiment. Pl Ecol 180:69–75

    Article  Google Scholar 

  • Ingerpuu N, Vellak K (1998) Eesti sammalde määraja. Eesti Loodusfoto, Tartu

    Google Scholar 

  • Ingerpuu N, Vellak K, Kukk T, Pärtel M (2001) Bryophyte and vascular plant species richness in boreo-nemoral moist forests and mires. Biodivers & Conservation 10:2153–2166

    Article  Google Scholar 

  • Ingerpuu N, Vellak K, Liira J, Pärtel M (2003) Relationships between species richness patterns in deciduous forests at the north Estonian limestone escarpment. J Veg Sci 14:773–780

    Article  Google Scholar 

  • Jackson DA (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance. Écoscience 2:297–303

    Article  Google Scholar 

  • Jackson DA (2015) Procrustes analysis and PROTEST. University of Toronto, Canada. Available at http://jackson.eeb.utoronto.ca/procrustes-analysis

  • Jägerbrand AK, Kudo G, Alatalo JM, Molau U (2012) Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types. Polar Sci 6:200–208

    Article  Google Scholar 

  • Keizer PJ, van Tooren BF, During HJ (1985) Effects of bryophytes on seedling emergence and establishment of short- lived forbs in chalk grassland. J Ecol 73:493–504

    Article  Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microbial Ecol 58:394–407

    Article  Google Scholar 

  • Leppik E, Jüriado I, Suija A, Liira J (2013) The conservation of ground layer lichen communities in alvar grasslands and the relevance of substitution habitats. Biodivers & Conservation 22:591–614

    Article  Google Scholar 

  • Leppik E, Jüriado I, Suija A, Liira J (2015) Functional ecology of rare and common epigeic lichens in alvar grasslands. Fungal Ecol 13:66–76

    Article  Google Scholar 

  • Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Annual Rev Ecol Evol Syst 34:575–604

    Article  Google Scholar 

  • Lisboa FJG, Peres-Neto PR, Chaer GM, da Conceição J, Mitchell RJ, Chapman SJ, Berbara RLL (2014) Much beyond Mantel: bringing Procrustes association metric to the plant and soil ecologist’s toolbox. PLOS ONE 9:e101238

    Article  PubMed  PubMed Central  Google Scholar 

  • Löbel S, Dengler J, Hobohm C (2006) Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot 41:377–393

    Article  Google Scholar 

  • Martínez-García LB, Richardson SJ, Tylianakis JM, Peltzer DA, Dickie IA (2015) Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol 205:1565–1576

    Article  PubMed  Google Scholar 

  • Nylén T, Luoto M (2015) Primary succession, disturbance and productivity drive complex species richness patterns on land uplift beaches. J Veg Sci 26:267–277

    Article  Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos PM, Stevens HH, Wagner S (2015) Vegan: community ecology package. Available at https://cran.r-project.org/web/packages/vegan

  • Otsus M, Zobel M (2004) Moisture conditions and the presence of bryophytes determine fescue species abundance in a dry calcareous grassland. Oecologia 138:293–299

    Article  PubMed  Google Scholar 

  • Ott S, Elders U, Jahns HM (1996) Vegetation of the rock-alvar of Gotland I. Microhabitats and succession. Nova Hedwigia 63:433–470

    Google Scholar 

  • Ott S, Elders U, Jahns HM (1997) Vegetation of the rock-alvar of Gotland II. Microclimate of lichen-rich habitats. Nova Hedwigia 64:87–101

    Google Scholar 

  • Pajunen AM, Oksanen J, Virtanen R (2011) Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J Veg Sci 22:837–846

    Article  Google Scholar 

  • Pärtel M, Kalamees R, Zobel M, Rosén E (1999) Alvar grasslands in Estonia: variation in species composition and community structure. J Veg Sci 10:561–570

    Article  Google Scholar 

  • Peres-Neto P, Jackson D (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ, Pressey RL (2000) Effectiveness of using vascular plants to select reserves for bryophytes and lichens. Biol Conservation 96:371–378

    Article  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative for long-term studies. Long-term studies in ecology: Approaches and alternatives. Springer, New York

    Google Scholar 

  • Pickett STA, Cadenasso ML, Meiners SJ (2012) Vegetation dynamics. In Van der Maarel E, Franklin J (eds) Vegetation ecology. Wiley-Blackwell, Victoria, Australia, pp 107–140

    Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, Available at http://www.R-project.org

  • Randlane T, Saag A, Suuija A (2013) Lichenized, lichenicolous and allied fungi of Estonia. Available at http://esamba.bo.bg.ut.ee/checklist/est/home.php

  • Roberts DW (2015) Labdsv: ordination and multivariate analysis for ecology. R package version 1.7-0., Available at http://CRAN.R-project.org/package=labdsv

  • Rosen E (1982) Vegetation development and sheep grazing in limestone grasslands of south Öland, Sweden. Acta Phytogeogr Suec 72:1–108

    Google Scholar 

  • Soudzilovskaia NA, Graae BJ, Douma JC, Grau O, Milbau A, Shevtsova A, Wolters L, Cornelissen JH (2011) How do bryophytes govern generative recruitment of vascular plants? New Phytol 190:1019–1031

    Article  PubMed  Google Scholar 

  • Špačková I, Lepš J (2004) Variability of seedling recruitment under dominant, moss, and litter removal over four years. Folia Geobot 39:41–55

    Article  Google Scholar 

  • Turtureanu PD, Palpurina S, Becker T, Dolnik C, Ruprecht E, Sutcliffe LME, Szabó A, Dengler J (2014) Scale- and taxon-dependent biodiversity patterns of dry grassland vegetation in Transylvania. Agric Eco-Syst Environm 182:15–24

    Article  Google Scholar 

  • Virtanen R, Crawley MJ (2010) Contrasting patterns in bryophyte and vascular plant species richness in relation to elevation, biomass and soay sheep on St Kilda, Scotland. Pl Ecol Diversity 3:77–85

    Article  Google Scholar 

  • Warren SD (2003) Synopsis: influence of biological soil crusts on arid land hydrology and soil stability. In J Belnap, O Lange (ed) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg, pp 349–360

    Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Rev Ecol Evol Syst 33:125–159

    Article  Google Scholar 

  • Zamfir M, Dai X, van der Maarel E (1999) Bryophytes, lichens and phanerogams in an alvar grassland: relationships at different scales and contributions to plant community pattern. Ecography 22:40–52

    Article  Google Scholar 

  • Zeileis A, Hothorn T (2002) Diagnostic checking in regression relationships. R News 2:7–10

    Google Scholar 

  • Zuur A, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, NY 10013, USA

    Book  Google Scholar 

Download references

Acknowledgements

This research was funded by Estonian Research Council (IUT 20–28) and the European Regional Development Fund (Centre of Excellence EcolChange). We thank N. Ingerpuu and R. Szava-Kovats and two anonymous reviewers for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David García de León.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García de León, D., Neuenkamp, L., Gerz, M. et al. Secondary succession in alvar grasslands – do changes in vascular plant and cryptogam communities correspond?. Folia Geobot 51, 285–296 (2016). https://doi.org/10.1007/s12224-016-9260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-016-9260-1

Keywords

Navigation