Skip to main content
Log in

Genetic Diversity and Spatial Genetic Structure of Chamaedaphne calyculata (Ericaceae) at the Western Periphery in Relation to its Main Continuous Range in Eurasia

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

A previous phylogeography and genetic diversity study of Chamaedaphne calyculata (Ericaceae) showed that populations over its geographic range were strongly separated into two groups: a Eurasian/NW North American group and a NE North American one corresponding with the disjunct distribution of Sphagnum-dominated peatlands in north-western and central-eastern North America. Here, I have extended the survey and focused on the species’ detailed postglacial origin and the effect of isolation on genetic diversity patterns, particularly within island-like populations at the western periphery of its range in Europe. Using AFLP markers, estimates of genetic diversity within 16 C. calyculata populations in the Eurasian group were low (percentage of polymorphic loci P PL=14.9–24.8 %, Nei’s gene diversity H=0.060–0.119). Genetic diversity patterns within this species did not support the hypothesis that genetic diversity decreases towards the periphery of the range. Bayesian clustering analysis showed that population-level admixture was present in almost all studied 16 populations, suggesting multi-directional gene flow. On the other hand, the majority of assigned individuals (ca. 98 % of individuals) were offspring of the original residents, confirming that C. calyculata populations in the present day acted as discrete genetic units both in its continuous range and at its western periphery, and that gene flow was historic rather than contemporary in Eurasia. There was no correlation between genetic and geographic distance in the Eurasian group (r=0.02, P>0.05, Mantel test) nor at the western periphery (r=0.15, P>0.05, Mantel test). The isolation-by-distance (IBD) scatterplot matched Hutchinson and Templeton’s interpretation (case III), and geographic distance between populations was not a reliable predictor of the degree of genetic differentiation between populations. It is suggested that the lack of IBD might be a result of random genetic drift in rather disconnected populations that have become increasingly fragmented relatively recently. Positive and significant relationships between genetic and geographic distance on a small population scale was the result of biparental inbreeding of C. calyculata and restricted seed rain. Despite sporadic generative reproduction and limited dispersal, the fine-scale genetic structure within populations has been maintained, even though population sizes have been reduced to small fragments in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldrich PR, Parker GR, Ward JS, Michler CH (2003) Spatial dispersion of trees in an old-growth temperate hardwood forest over 60 years of succession. Forest Ecol Managem 180:475–491

    Article  Google Scholar 

  • Baszyński T, Kłyszejko E, Sławiński W, Zawadzka I, Zawadzki K (1956a) The Gorbacz raised peatlands. Part I. Botanical and stratigraphic studies and chemical analysis of gytia. Acta Soc Bot Pol 25:421–433

    Google Scholar 

  • Baszyński T, Kłyszejko E, Sławiński W, Zawadzka I, Zawadzki K (1956b) The Gorbacz raised peatlands. Part II. Chemical and biological analysis. Acta Soc Bot Pol 25:663–676

    Google Scholar 

  • Bizoux JP, Mahy G (2007) Within-population genetic structure and clonal diversity of a threatened endemic metallophyte, Viola calaminaria (Violaceae). Amer J Bot 94:887–895

    Article  CAS  Google Scholar 

  • Bonin A, Bellemain E, Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Molec Ecol 13:3261–3273

    Article  CAS  Google Scholar 

  • Damman AWH, French TW (1987) The ecology of peat bogs of the glaciated northeastern United States: a community profile. US Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Doligez A, Baril C, Joly HI (1998) Fine-scale spatial genetic structure with nonuniform distribution of individuals. Genetics 148:905–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durka W (1999) Genetic diversity in peripheral and subcentral populations of Corrigiola litoralis L. (Illecebraceae). Heredity 83:476–84

    Article  PubMed  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographic ranges: the central-marginal hypothesis and beyond. Molec Ecol 17:1170–1188

    Article  CAS  Google Scholar 

  • Eidesen PB, Alsos IG, Popp M, Stensrud Ø, Brochmann C (2007a) Nuclear versus plastid data: complex Pleistocene history of a circumpolar key species. Molec Ecol 16:3902–3925

    Article  CAS  Google Scholar 

  • Eidesen PB, Carlsen T, Molau U, Brochmann C (2007b) Repeatedly out of Beringia: Cassiope tetragona embraces the Arctic. J Biogeogr 34:1559–1574

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molec Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.2.2): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578

    Article  CAS  Google Scholar 

  • Flinn M, Wein A, Ross W (1977) Depth of underground plant organs and theoretical survival during fire. Canad J Bot 55:2550–2554

    Article  Google Scholar 

  • Flinn M, Wein A, Ross W (1988) Regrowth of forest understory species following seasonal burning. Canad J Bot 66:150–155

    Article  Google Scholar 

  • González-Martínez SC, Gerber S, Cervera MT (2002) Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor Appl Genet 104:1290–1297

    Article  PubMed  Google Scholar 

  • Halsey LA, Vitt DH, Gignac LD (2000) Sphagnum-dominated peatlands in North America since the Last Glacial maximum: Their occurrence and extent. Bryologist 103:334–352

    Article  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Heywood JS (1991) Spatial analysis of genetic variation in plant populations. Annual Rev Ecol Syst 22:335–355

    Article  Google Scholar 

  • Hoffmann AA, Hallas RJ, Dean JA, Schiffer M (2003) Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301:100–102

    Article  CAS  PubMed  Google Scholar 

  • Holsinger KE, Lewis PO (2003) Hickory v. 1.0. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs. Available at http://www.eeb.uconn.edu/

  • Hutchinson DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Ilnicki P (2002) Peat-bogs and peat. University of Life Sciences in Poznań, Poznań

    Google Scholar 

  • Jacquemyn H, Brys R, Honnay O, Hermy M, Roldán-Ruiz I (2005) Local forest environment largely affects belowground growth, clonal diversity and fine scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifolia. Molec Ecol 14:4479–4488

    Article  CAS  Google Scholar 

  • Jones FA, Hamrick JL, Peterson CJ, Squiers ER (2006) Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Molec Ecol 15:851–861

    Article  CAS  Google Scholar 

  • Jump AS, Peńuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaźmierczakowa R, Zarzycki K (2001) Polska Czerwona Księga Roślin (Polish Red Data Book of Plants). Instytut Botaniki im. Władysława Szafera, PAN, Kraków

    Google Scholar 

  • Kevan PG, Tikhmenev EA, Usui M (1993) Insects and plants in the pollination ecology of the boreal zone. Ecol Res 8:247–267

    Article  Google Scholar 

  • Klimko M, Kosińska E, Szkudlarz P (2000) Morphometry of the leaves of Chamaedaphne calyculata (L.) Moench. Roczn Akad Roln Poznaniu 3:143–154

    Google Scholar 

  • Kloss M (1996) Plant succession on Chamaedaphne calyculata (L.) Moench mire in the Kampinos Forest. Polish Ecol Stud 22:129–139

    Google Scholar 

  • Kovach WL (1999) M vsp – A Multivariate Statistical Package for Windows ver. 3.1. Kovach Computing Service, Pentraeth, Wales

    Google Scholar 

  • Kruszelnicki J (2001) Chamaedaphne calyculata. In Kaźmierczakowa R, Zarzycki K (eds) Polish Red Data Book of Plants. Instytut Botaniki im. Władysława Szafera, PAN, Kraków, pp 283–285

    Google Scholar 

  • Latałowa M (1999) Analiza paleoekologiczna obiektu “Sicienko” (The paleoecological analysis of “Sicienko”). In Herbich J, Herbichowa M, Latałowa M (eds) Plan ochrony ekosystemów torfowiskowych Drawieńskiego Parku Narodowego (The conservation plan of peat bogs in the Drawa National Park). Stowarzyszenie Pracowni Autorskich Afix dla Drawieńskiego Parku Narodowego, Poznań, p 44

    Google Scholar 

  • Lauterbach D, Ristow M, Gemeinholzer B (2011) Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae). Pl Biol 13:1–11

    Article  Google Scholar 

  • Lewandowska-Sabat AM, Fjellheim S, Rognli OA (2010) Extremely low genetic variability and highly structured local populations of Arabidopsis thaliana at higher latitudes. Molec Ecol 19:4753–4764

    Article  CAS  Google Scholar 

  • Mahy G, Ennos RA, Jacquemart AL (1999) Allozyme variation and genetic structure of Calluna vulgaris (heather) populations in Scotland: the effect of postglacial recolonization. Heredity 82:654–660

    Article  CAS  PubMed  Google Scholar 

  • Malinowska H, Janyszek M, Szczepaniak M (2004) Propagation of leather leaf Chamaedaphne calyculata Moench from seeds and shoot cuttings. Dendrobiology 52:33–37

    Google Scholar 

  • McDonald RI, Peet RK, Urban DL (2003) Spatial patterns of Quercus regeneration limitation and Acer rubrum invasion in a Piedmont forest. J Veg Sci 14:441–450

    Google Scholar 

  • Meusel H, Jäger E, Rauschert S, Weinert E (1978) Vergleichende Chorologie der zentraleuropäischen Flora. Fischer, Jena

    Google Scholar 

  • Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z (2006) Red List of Plants and Fungi in Poland. Instytut Botaniki PAN, Kraków

    Google Scholar 

  • Morgante M, Vendramin GG, Rossi P (1991) Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Canad J Bot 69:2704–2708

    Article  Google Scholar 

  • Murawski IA, Hamrick JL (1991) The effect of the density of flowering individuals on the mating system of nine tropical tree species. Heredity 67:167–174

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker KC, Hamrick JL Parker AJ, Nason JD (2001) Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity 87:99–113

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse P (2005) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pellini SL, Dzurisin JDK, Prior KM, Williams CM, Marsico TD, Sinclair BJ, Hellman JJ (2009) Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc Natl Acad Sci USA 106:11160–11165

    Article  Google Scholar 

  • Petit RJ, Bialozyt R, Garnier-Géré P, Hampe A (2004) Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. Forest Ecol Managem 197:117–137

    Article  Google Scholar 

  • Pérez-Collazos E, Sanchez-Gómez P, Jiménez JF, Catalán P (2009) The phylogeographical history of the Iberian steppe plant Ferula loscosii (Apiaceae): a test of the abundant-centre hypothesis. Molec Ecol 18:848–861

    Article  Google Scholar 

  • Premoli AC, Kitzberger T (2005) Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests in northwestern Patagonia. Molec Ecol 14:2319–2329

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reader RJ (1977) Bog ericad flowers: self-compatibility and relative attractiveness to bees. Canad J Bot 55:2279–2287

    Article  Google Scholar 

  • Rohlf FJ (1997) NTSYS-pc numerical taxonomy and multivariate analysis system, ver. 2.0. Exeter Publications, New York

    Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annual Rev Ecol Evol Syst 40:415–436

    Article  Google Scholar 

  • Small E (1976) Insect pollinator of the Met Bleue peat bog of Ottawa. Canad Field-Naturalist 90:22–28

    Google Scholar 

  • StatSoft, Inc. (1997) Statistica for Windows. Computer program manual. Available at: http://www.statsoft.com

  • Szczecińska M, Sawicki J, Wąsowicz K, Hołdyński C (2009) Genetic variation of the relict and endangered population of Chamaedaphne calyculata (Ericaceae) in Poland. Dendrobiology 62:23–33

    Google Scholar 

  • Tylżanowski T (1975) Chamedafne północna – Chamaedaphne calyculata w Borach Tucholskich (The Leatherleaf – Chamaedaphne calyculata in Bory Tucholskie Forest). Chrońmy Przyr Ojczysta 31:51–52

    Google Scholar 

  • Vekemans X (2002) A flp -S urv version 1.0. Université Libre de Bruxelles, Belgium

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Molec Ecol 13:921–935

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells GP, Young AG (2002) Effects of seed dispersal on spatial genetic structure in populations of Rutidosis leptorrhynchoides with different levels of correlated paternity. Genet Res 79:219–226

    Article  PubMed  Google Scholar 

  • Williams DA, Muchugu E, Overholt WA, Cuda JP (2007) Colonization patterns of the invasive Brazilian peppertree, Schinus terebinthifolius, in Florida. Heredity 98:284–293

    Article  CAS  PubMed  Google Scholar 

  • Wróblewska A (2012) The role of disjunction and post-glacial population expansion on phylogeographic history and genetic diversity of circumboreal plant, Chamaedaphne calyculata. Bot J Linn Soc 105:761–775

    Article  Google Scholar 

Download references

Acknowledgements

I thank Alexander Batalov, Peter Efimov, Edyta Jermakowicz, Anna Otręba, Martti Salo, Vladimir Semerikov, Oleg Sozinov, Monika Szczecińska, Kadri Tali, Izabela Tałałaj, Irina Tatarenko, Gergely Várkonyi, Anna Wedel-Sala, Dan Wołkowycki and Hanna Zacharczuk for help with collecting samples in Poland, and Beata Ostrowiecka for technical assistance in the laboratory. Michael Jacobs helped edit the manuscript and Andreas Tribsch, as well as three anonymous referees, gave insightful comments on an earlier version of the manuscript. This research was funded by a grant from the Polish Ministry of Science and Higher Education (NN303 366135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Wróblewska.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wróblewska, A. Genetic Diversity and Spatial Genetic Structure of Chamaedaphne calyculata (Ericaceae) at the Western Periphery in Relation to its Main Continuous Range in Eurasia. Folia Geobot 49, 193–208 (2014). https://doi.org/10.1007/s12224-013-9165-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-013-9165-1

Keywords

Navigation