Skip to main content
Log in

Reinforced Traditional Management is Needed to Save a Declining Meadow Species. A Demographic Analysis

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The changes in agricultural practices during the last century have led to a drastic decrease in the number of traditionally managed hay meadows. Also, traditional management practices are often applied more cursorily in the remaining meadows. In combination with an increase in aerial anthropogenic nitrogen deposition, this has led to a loss of biodiversity. To investigate whether the current management is sufficient for maintaining viable populations of a typical meadow plant, Succisa pratensis, we experimentally reinforced the raking and mowing parts of the traditional management over four years in a two-by-two factorial experiment in three traditionally managed wooded hay meadows on the Baltic island of Gotland, Sweden. We found decreased litter and hay production in two of the three studied meadows as a result of our treatments. Plant sizes and asymptotic population growth rates (λ) of S. pratensis increased, particularly in plots receiving the combined raking and mowing treatment. Stochastic long-term population growth rates (λ s ) increased under the reinforced management: projected population sizes 50 years into the future showed a three-fold increase in raked plots and a 17-fold increase in plots that were both raked and mown. Because we found positive responses even in these seemingly well-managed meadows we conclude that it is essential that management is carried out more thoroughly to ensure viable population sizes. Our conclusion applies to most semi-natural grasslands receiving anthropogenic nitrogen, or where traditional management practices are less rigorously applied. We also suggest using biomass estimation instead of vegetation height as a measure of management strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams AW (1955) Succisa pratensis Moench. J Ecol 43:709–718

    Article  Google Scholar 

  • Anonymous (1976) Inventering av änges- och lövmarker (Inventory of wooded hay meadows and deciduous woodlands on Gotland). Länsstyrelsen i Gotlands Län, Visby

  • Anonymous (1991) Ängs- och hagmarker på Gotland 1991. Del 4. Södra Gotland (Seminatural grasslands on Gotland 1991. Part 4. Southern Gotland). Länsstyrelsen i Gotlands Län, Visby

  • Anonymous (1992) Ängs- och hagmarker på Gotland 1992. Del 3, Mellersta Gotland (Seminatural grasslands on Gotland 1992. Part 3. Middle Gotland). Länsstyrelsen i Gotlands Län, Visby

  • Anonymous (2004) Återinventering av gotländska ängen (Reinventory of wooded hay meadows on Gotland). Rapport nr 3 från Länsstyrelsens miljöenhet, Länsstyrelsen i Gotlands Län, Visby

  • Berendse F (1999) Implications of increased litter production for plant biodiversity. Trends Ecol Evol 14:4–5

    Article  PubMed  Google Scholar 

  • Brys R, Jacquemyn H, Endels P, De Blust G Hermy M (2005) Effect of habitat deterioration on population dynamics and extinction risks in a previously common perennial. Conservation Biol 19:1633–1643

    Article  Google Scholar 

  • Bühler C, Schmid B (2001) The influence of management regime and altitude on the population structure of Succisa pratensis: implications for vegetation monitoring. J Appl Ecol 38:689–698

    Article  Google Scholar 

  • Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38:253–267

    Article  Google Scholar 

  • Caswell H (1996) Analysis of life table response experiments II. Alternative parameterizations for size- and stage-structured models. Ecol Modelling 88:73–82

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: Construction, analysis, and interpretation. Ed. 2. Sinauer, Sunderland, MA

    Google Scholar 

  • Caswell H, Brault S Read A, Smith T (1998) Harbor porpoise and fisheries: an uncertainty analysis of incidental mortality. Ecol Appl 8:1226–1238

    Article  Google Scholar 

  • Colling G, Matthies D (2006) Effects of habitat deterioration on population dynamics and extinction risk of an endangered, long-lived perennial herb (Scorzonera humilis). J Ecol 94:959–972

    Article  Google Scholar 

  • Crone EE (2001) Is survivorship a better fitness surrogate than fecundity? Evolution 55:2611–2614

    PubMed  CAS  Google Scholar 

  • Croneborg H (2001) Gotländska ängar. En katalog över slåttermarker i hävd på Gotland år 2001 (Wooded hay meadows on Gotland. A catalogue of traditionally managed hay meadows on Gotland in 2001). Länsstyrelsen i Gotlands Län, Visby

    Google Scholar 

  • Dentener FJ (2006) Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee. Available at: http://daac.ornl.gov/

  • Ehrlén J, Syrjänen K, Leimu R, Garcias MB, Lehtilä K (2005) Land use and population growth of Primula veris: an experimental demographic approach. J Appl Ecol 42:317–326

    Article  Google Scholar 

  • Ekstam U, Forshed N (1996) Äldre fodermarker (Old hay meadows and pastureland). Naturvårdsverket, Stockholm

    Google Scholar 

  • Ekstam U, Forshed R, Mattson M, Porsne T (1984) Ölands och Gotlands växtvärld. En ekologisk och kulturhistorisk flora (Plants on Gotland. An ecological and cultural flora). Bokförlaget Natur och Kultur, Stockholm

    Google Scholar 

  • Ekstam U, Aronsson M, Forshed N (1988) Ängar: Om naturliga slåttermarker i odlingslandskapet (Hay meadows: On natural hay meadows in the cultural landscape). Lts förlag. Naturvårdsverket, Stockholm

    Google Scholar 

  • Foster BL, Gross KL (1998) Species richness in a successional grassland: Effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602

    Article  Google Scholar 

  • Franzén D, Eriksson O (2003) Patch distribution and dispersal limitation of four plant species in Swedish semi-natural grasslands. Pl Ecol 166:217–225

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer Naturalist 111:1169–1194

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley & Sons, Chichester

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: A functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Horwitz CC, Schemske DW, Caswell H (1997) The “importance” of life history stages to population growth: prospective and retrospective analyses. In Tuljapurkar S, Caswell H (eds) Structured population models in marine, terrestrial and freshwater systems. Chapman and Hall, New York, pp 247–272

    Chapter  Google Scholar 

  • Hultén E, Fries M (1986) Atlas of North European vascular plants north of the tropic of cancer. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Jacquemyn H, Brys R. Hermy M (2003) Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol Conservation 111:137–147

    Article  Google Scholar 

  • Jongejans E, de Kroon H (2005) Space versus time variation in the population dynamics of three co-occurring perennial herbs. J Ecol 93:681–692

    Article  Google Scholar 

  • Kukk T, Kull K (1997) Puisniidud (Wooded meadows). Estonia Marit 2:138–146

    Google Scholar 

  • Kull K, Zobel M (1991) High species richness in an Estonian wooded meadow. J Veg Sci 2:715–718

    Article  Google Scholar 

  • Lee M, Manning P, Rist J, Power SA, Marsh C (2010) A global comparison of grassland biomass response to CO2 and nitrogen enrichment. Philos Trans, Ser B 365:2047–2056

    Article  CAS  Google Scholar 

  • Lennartsson T (2000) Management and population viability of the pasture plant Gentianella campestris: the role of interactions between habitat factors. Ecol Bull 48:111–121

    Google Scholar 

  • Lennartsson T, Oostermeijer JGB (2001) Demographic variation and population viability in Gentianella campestris: effects of grassland management and environmental stochasticity. J Ecol 89:451–463

    Article  Google Scholar 

  • Levin L, Caswell H, Bridges T, DiBacco C, Cabrera D, Plaia G (1996) Demographic responses of estuarine polychaetes to pollutants: life table response experiments. Ecol Appl 6:1295–1313

    Article  Google Scholar 

  • Lienert J (2004) Habitat fragmentation effects on fitness of plant populations – a review. J Nat Conservation 12:53–72

    Article  Google Scholar 

  • Lindborg R, Ehrlén J (2002) Evaluating the extinction risk of a perennial herb: Demographic data versus historical records. Conservation Biol 16:683–690

    Article  Google Scholar 

  • Lucas RW, Forseth IN, Casper BB (2008) Using rainout shelters to evaluate climate change effects on the demography of Cryptantha flava. J Ecol 96:514–522

    Article  Google Scholar 

  • Martinsson M (1999) Böisårkar u daldargras – Naturvärden och vård i gotländska odlingslandskap (Natural assets and conservation in the cultural landscape on Gotland). Länsstyrelsen i Gotlands län, Visby

    Google Scholar 

  • Milberg P (1995) Soil seed bank after eighteen years of succession from grassland to forest. Oikos 13:432–440

    Google Scholar 

  • Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer, Sunderland, MA

    Google Scholar 

  • Mossberg B, Stenberg L (2003) Den nya nordiska floran (The new Nordic flora). Wahlström & Widstrand, Stockholm

    Google Scholar 

  • Münzbergová Z (2006) Effect of population size on the prospect of species survival. Folia Geobot 41:137–150

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ramula S (2008) Population dynamics of a monocarpic thistle: simulated effects of reproductive timing and grazing of flowering plants. Acta Oecol 33:231–239

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Schleuning M, Matthies D (2008) Habitat change and plant demography: assessing the extinction risk of a formerly common grassland perennial. Conservation Biol 23:174–183

    Article  Google Scholar 

  • SMHI (2006) Weather and water, no 5. Sveriges meteorologiska och hydrologiska institut, Norrköping

    Google Scholar 

  • Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountfort JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environm Pollut 158:2940–2945

    Article  CAS  Google Scholar 

  • Svensson BM, Carlsson BÅ (2005) How can we protect rare hemiparasitic plants? Early-flowering taxa of Euphrasia and Rhinanthus on the Baltic island of Gotland. Folia Geobot 40:261–272

    Article  Google Scholar 

  • Vergeer P, Rengelink R, Copal A, Ouborg NJ (2003b) The interacting effects of genetic variation, habitat quality and population size on performance of Succisa pratensis. J Ecol 91:18–26

    Article  CAS  Google Scholar 

  • Vergeer P, Rengelink R, Ouborg NJ, Roelofs JGM (2003a) Effects of population size and genetic variation on the response of Succisa pratensis to eutrophication and acidification. J Ecol 91:600–609

    Article  Google Scholar 

  • Wahlman H, Milberg P (2002) Management of semi-natural grassland vegetation: evaluation of a long-term experiment in Southern Sweden. Ann Bot Fenn 39:159–166

    Google Scholar 

  • Wallin L, Avery HRD (2007) A timesaving, accurate method for locating and re-locating plants in ecological field studies. Ecol Inform 2:367–372

    Article  Google Scholar 

  • Wallin L, Svensson BM, Lönn M (2009) Artificial dispersal as a restoration tool in meadows: sowing or planting? Restor Ecol 17:270–279

    Article  Google Scholar 

  • Warren J, Christal A, Wilson F (2002) Effects of sowing and management on vegetation succession during grassland habitat restoration. Agric Eco-Syst Environm 93:393–402

    Article  Google Scholar 

  • Watkinson AR, Ormerod SJ (2001) Grasslands, grazing and biodiversity: editors’ introduction. J Appl Ecol 38:233–237

    Article  Google Scholar 

  • Wiedermann MM, Gunnarsson U, Ericson L, Nordin A (2009) Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition. New Phytol 181:208–217

    Article  PubMed  CAS  Google Scholar 

  • Wissman J (2006) Grazing regimes and plant reproduction in semi-natural grasslands. PhD Thesis No. 2006:40, Swedish University of Agricultural Sciences, Uppsala

  • Zobel M (1992) Plant species coexistence – the role of historical, evolutionary and ecological factors. Oikos 65:314–320

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the managers of the meadows for sharing this wonderful habitat with us: Ingrid and Anders Lingvall, Lars-Göran Söderström and Helen Eriksson, and Ardre hembygdsförening. Also, great thanks to the field assistants: Lotta Borg, Katrine Bruntse, Therese Eriksson, Ellen Flygare, Karin Jakobsson, and Monia Lindeberg. The study has been funded by a grant from Foundation for Strategic Environmental Research to B.M.S., and from Bjurzons, Extensus, E. Hellgrens, Helge Ax:son Johnsons, P.O. Lundells, B. Lundmans, and Tullbergs scholarships to L.W. The manuscript has been improved by comments from Hamish Avery, Bengt Å. Carlsson, Johan Ehrlén, Håkan Rydin, Jon Ågren, and three anonymous reviewers. All are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brita M. Svensson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Matrix transitions for Succisa pratensis populations in the Bölske, Kullands and Mullvalds meadows, for all treatments (control, C; raking, R; mowing, M; raking + mowing, RM). Data is based on pooled matrices 2003–2006. i = stage in year t +1, j = stage in year t. The figures correspond to the following stages: 1: seedling, 2: juvenile, 3: small vegetative, 4: large vegetative, 5: small flowering, and 6: large flowering. In bold are transitions that contributed the most to the increased population growth rates in treated plots compared to the control (LTRE, see the article) (PDF 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallin, L., Svensson, B.M. Reinforced Traditional Management is Needed to Save a Declining Meadow Species. A Demographic Analysis. Folia Geobot 47, 231–247 (2012). https://doi.org/10.1007/s12224-012-9123-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-012-9123-3

Keywords

Navigation