Skip to main content

Advertisement

Log in

Yeast exopolysaccharides and their physiological functions

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Mounting evidence indicated the capability of various microorganisms in biosynthesis of exopolysaccharides (EPSs). A wide range of evidence extensively investigated the ability of bacterial species for EPS synthesis and their favorable effects, so little is known regarding yeast species. Many factors like composition of growth media and fermentation conditions are related to the structural and physical properties of EPSs. The EPS protects the producer yeast strain against extreme environment. Researchers proposed that yeast EPSs have priority over bacterial EPSs because of high yields of EPS biosynthesis and easy separation methods from growth media. Besides, they have drawn increasing attention due to their interesting biological activities, food, pharmaceutical, and cosmetics applications. Although a limited number of studies exist, this review aims to highlight the EPS structure and various applications of known yeast species in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immune deficiency syndrome

BBB:

Blood-brain barrier

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

EPSs:

Exopolysaccharides

FAD:

Flavin adenine dinucleotide

GRAS:

Generally recognized as safe

HePS:

Heteropolysaccharide

HIV:

Human immunodeficiency virus

HMW:

High molecular weight

HoPS:

Homopolysaccharide

Ig:

Immunoglobulin

IL:

Interleukin

IUPAC-IUB:

International Union of Pure and Applied Chemistry-International Union of Biochemistry

TNF:

Tumor necrosis factor

UV:

Ultraviolet

References

  • Anan’eva EP, Vitovskaya GA, (1998) Heteroglycan produced by the yeast Sporobolomyces albo-rubescens VKM Y-2450. Microbiol 67:181–183

    Google Scholar 

  • Chen N-Y, Hsu T-H, Lin F-Y, Lai H-H, Wu J-Y (2006) Effects on cytokine-stimulating activities of EPS from Tremella mesenterica with various carbon sources. Food Chem 99:92–97. https://doi.org/10.1016/j.foodchem.2005.07.023

    Article  CAS  Google Scholar 

  • Chen Z, Shi J, Yang X, Liu Y, Nan B, Wang Z (2016) Isolation of exopolysaccharide-producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. Int J Dairy Technol 69:410–417. https://doi.org/10.1111/1471-0307.12276

    Article  CAS  Google Scholar 

  • Cheng H-H, Hou W-C, Lu M-L (2002) Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or without Nebacitin. J Agric Food Chem 50:7438–7443

    Article  CAS  Google Scholar 

  • Chun-hui L et al (2012) Identification of anamorph yeast of Tremella aurantialba and optimization of medium composition for production of exopolysaccharides. Chin J Chem Eng 12:973–981

    Google Scholar 

  • De Baets S, Du Laing S, Francois C, Vandamme EJ (2002) Optimization of exopolysaccharide production by Tremella mesenterica NRRL Y-6158 through implementation of fed-batch fermentation. J Ind Microbiol Biotechnol 29:181–184. https://doi.org/10.1038/sj.jim.7000276

    Article  CAS  PubMed  Google Scholar 

  • De Baets S, Vandamme EJ (2001) Extracellular Tremella polysaccharides: structure, properties and applications. Biotechnol Lett 23:1361–1366

    Article  Google Scholar 

  • Du X, Zhang J, Lv Z, Ye L, Yang Y, Tang Q (2014) Chemical modification of an acidic polysaccharide (TAPA1) from Tremella aurantialba and potential biological activities. Food Chem 143:336–340. https://doi.org/10.1016/j.foodchem.2013.07.137

    Article  CAS  PubMed  Google Scholar 

  • Du X et al (2009) Structural elucidation and immuno-stimulating activity of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydr Res 344:672–678. https://doi.org/10.1016/j.carres.2009.01.021

    Article  CAS  PubMed  Google Scholar 

  • Du X, Zhang Y, Mu H, Lv Z, Yang Y, Zhang J (2015) Structural elucidation and antioxidant activity of a novel polysaccharide (TAPB1) from Tremella aurantialba. Food Hydrocoll 43:459–464. https://doi.org/10.1016/j.foodhyd.2014.07.004

    Article  CAS  Google Scholar 

  • Elinov N, Gurina S, Ananeva E (1995) Immunobiological activity of yeasts glicanes in the experiment. Mikol Fitopatol 29:39–43

    Google Scholar 

  • Elinov N, Pronina M, Anan’Eva E (1997) Effect of physical and chemical mutagens on variability in Sporobolomyces albo-rubescens VKM Y-2450. Microbiology 66:188–191

    CAS  Google Scholar 

  • Elinov NPVG, Marikhin VA, Marjukhta YB, Kozlova TV (1979) Mannan produced by Rhodotorula rubra strain 14. Carbohydr Res 75:185–190

    Article  CAS  Google Scholar 

  • Fraser C, Jennings H, Moyna P (1973) Structural analysis of an acidic polysaccharide from Tremella mesenterica NRRL Y-6158. Can J Biochem 51:219–224

    Article  CAS  Google Scholar 

  • Frengova G, Simova E, Beshkova D (1997) Caroteno-protein and exopolysaccharide production by co-cultures of Rhodotorula glutinis and Lactobacillus helveticus. J Ind Microbiol Biotechnol 18:272–277

    Article  CAS  Google Scholar 

  • Ghada SI, Manal GH, Mohsen MS, Eman AG (2012) Production and biological evaluation of exopolysaccharide from isolated Rhodotorula glutinins. Aust J Basic Appl Sci 6:401–408

    Google Scholar 

  • Gientka I, Błażejak S, Stasiak-Różańska L, Chlebowska-Śmigiel A (2015) Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties; review. Acta Sci Pol Technol Aliment 14:283–292. https://doi.org/10.17306/j.Afs.2015.4.29

    Article  CAS  PubMed  Google Scholar 

  • Gientka I, Bzducha-Wróbel A, Stasiak-Różańska L, Bednarska AA, Błażejak S (2016) The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources. Electron J Biotechnol 22:31–37. https://doi.org/10.1016/j.ejbt.2016.02.008

    Article  Google Scholar 

  • Grigorova D, Pavlova K, Panchev I (1999) Preparation and preliminary characterization of exopolysaccharides by yeast Rhodotorula acheniorum MC. Appl Biochem Biotechnol 81:181–191

    Article  CAS  Google Scholar 

  • Hamidi M et al (2020) Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. Int J Biol Macromol 151:268–277. https://doi.org/10.1016/j.ijbiomac.2020.02.206

    Article  CAS  PubMed  Google Scholar 

  • Han M, Du C, Xu Z-Y, Qian H, Zhang W-G (2016) Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2. Int J Biol Macromol 88:603–613. https://doi.org/10.1016/j.ijbiomac.2016.04.035

    Article  CAS  PubMed  Google Scholar 

  • Y Hao et al (2020) Exopolysaccharide from Cryptococcus heimaeyensis S20 induces autophagic cell death in non-small cell lung cancer cells via ROS/p38 and ROS/ERK signalling Cell Prolif 53.https://doi.org/10.1111/cpr.12869

  • Kharat PP, Yadav SR, Ragavan ML, Das N (2018) Isolation and characterization of exopolysaccharides from yeast isolates. Research J Pharm and Tech 11:537–542. https://doi.org/10.5958/0974-360X.2018.00100.2

    Article  Google Scholar 

  • Kiho T, Kochi M, Usui S, Hirano K, Aizawa K, Inakuma T (2001) Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H). Biol Pharm Bull 24:1400–1403

    Article  CAS  Google Scholar 

  • Kiho TMH, Kobayashi T, Usui S, Ukai S, Aizawa K, Inakuma T (2000) Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Biosci Biotechnol Biochem 64:417–419

    Article  CAS  Google Scholar 

  • Kuncheva M, Panchev I, Pavlova K, Russinova-Videva S, Georgieva K, Dimitrova S (2013) Functional characteristics of an exopolysaccharide from antarctic yeast strain Cryptococcus Laurentii AL62. Biotechnol Biotechnol Equip 27:4098–4102. https://doi.org/10.5504/BBEQ.2013.0009

    Article  CAS  Google Scholar 

  • Kuncheva M, Pavlova K, Panchev I, Dobreva S (2007) Emulsifying power of mannan and glucomannan produced by yeasts. Int J Cosmet Sci 29:377–384

    Article  CAS  Google Scholar 

  • Lal P, Sharma D, Pruthi P, Pruthi V (2010) Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol 109:128–136. https://doi.org/10.1111/j.1365-2672.2009.04634.x

    Article  CAS  PubMed  Google Scholar 

  • Lo HC, Tsai FA, Wasser SP, Yang JG, Huang BM (2006) Effects of ingested fruiting bodies, submerged culture biomass, and acidic polysaccharide glucuronoxylomannan of Tremella mesenterica Retz.: Fr. on glycemic responses in normal and diabetic rats. Life Sci 78:1957–1966. https://doi.org/10.1016/j.lfs.2005.08.033

    Article  CAS  PubMed  Google Scholar 

  • Ma W et al (2018) Characterization, antioxidativity, and anti-carcinoma activity of exopolysaccharide extract from Rhodotorula mucilaginosa CICC 33013. Carbohydr Polym 181:768–777. https://doi.org/10.1016/j.carbpol.2017.11.080

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei Seveiri R et al (2020) Characterization and prospective applications of the exopolysaccharides produced by Rhodosporidium babjevae. Adv Pharm Bull 10:254–263. https://doi.org/10.34172/apb.2020.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parolis LA, Duus JØ, Parolis H, Meldal M, Bock K (1996) The extracellular polysaccharide of Pichia (Hansenula) holstii NRRL Y-2448: the structure of the phosphomannan backbone. Carbohydr Res 293:101–117

    Article  CAS  Google Scholar 

  • Parolis LA, Parolis H, Kenne L, Meldal M, Bock K (1998) The extracellular polysaccharide of Pichia (Hansenula) holstii NRRL Y-2448: the phosphorylated side chains. Carbohydr Res 309:77–87

    Article  CAS  Google Scholar 

  • Pavlova K, Grigorova D (1999) Production and properties of exopolysaccharide by Rhodotorula acheniorum MC. Food Res Int 32:473–477

    Article  CAS  Google Scholar 

  • Pavlova K, Koleva L, Kratchanova M, Panchev I (2004) Production and characterization of an exopolysaccharide by yeast. World J Microbiol Biotechnol 20:435–439

    Article  CAS  Google Scholar 

  • Pavlova K, Panchev I, Krachanova M, Gocheva M (2009) Production of an exopolysaccharide by antarctic yeast. Folia Microbiol 54:343–348

    Article  CAS  Google Scholar 

  • Pavlova K, Rusinova-Videva S, Kuncheva M, Kratchanova M, Gocheva M, Dimitrova S (2011) Synthesis and characterization of an exopolysaccharide by antarctic yeast strain Cryptococcus laurentii AL100. Appl Biochem Biotechnol 163:1038–1052. https://doi.org/10.1007/s12010-010-9107-9

    Article  CAS  PubMed  Google Scholar 

  • Petersen GR, Nelson GA, Cathey CA, Fuller GG (1989) Rheologically interesting polysaccharides from yeasts. Appl Biochem Biotechnol 20:845–867

    Article  Google Scholar 

  • Petersen GR, Schubert WW, Richards GF, Nelson GA (1990) Yeasts producing exopolysaccharides with drag-reducing activity. Enzyme Microb Technol 12:255–259

    Article  CAS  Google Scholar 

  • Poli A, Anzelmo G, Tommonaro G, Pavlova K, Casaburi A, Nicolaus B (2010) Production and chemical characterization of an exopolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL isolated from Livingston Island, Antarctica. Folia Microbiol 55:576–581

    Article  CAS  Google Scholar 

  • Prajapati VD, Jani GK, Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95:540–549. https://doi.org/10.1016/j.carbpol.2013.02.082

    Article  CAS  PubMed  Google Scholar 

  • Ragavan ML, Das N (2019) Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. Annal Microbiol 69:515–530. https://doi.org/10.1007/s13213-019-1440-9

    Article  CAS  Google Scholar 

  • Y Rahbar Saadat A Yari Khosroushahi AA Movassaghpour M Talebi B Pourghassem Gargari (2020) Modulatory role of exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as probiotic yeasts from dairy products in human colon cancer cells J Funct Foods 64 https://doi.org/10.1016/j.jff.2019.103675

  • Rahbar Saadat Y, Yari Khosroushahi A, Pourghassem Gargari B (2019) A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 217:79–89

    Article  CAS  Google Scholar 

  • Ramirez MA (2016) Characterization and safety evaluation of exopolysaccharide produced by Rhodotorula minuta BIOTECH 2178 ETP. Int J Food Eng. https://doi.org/10.18178/ijfe.2.1.31-35

    Article  Google Scholar 

  • Reeslev M, Jørgensen BB, Jørgensen OB (1993) Influence of Zn2+ on yeast-mycelium dimorphism and exopolysaccharide production by the fungus Aureobasidium pullulans grown in a defined medium in continuous culture. J Gen Microbiol 139:3065–3070

    Article  CAS  Google Scholar 

  • Reeslev M, Jørgensen BB, Jørgensen OB (1996) Exopolysaccharide production and morphology of Aureobasidium pullulans grown in continuous cultivation with varying ammonium-glucose ratio in the growth medium. J Biotechnol 51:131–135

    Article  CAS  Google Scholar 

  • Reeslev M, Nielsen JC, Olsen J, Jensen B, Jacobsen T (1991) Effect of pH and the initial concentration of yeast extract on regulation of dimorphism and exopolysaccharide formation of Aureobasidium pullulans in batch culture. Mycol Res 95:220–226

    Article  Google Scholar 

  • Reeslev M, Strøm T, Jensen B, Olsen J (1997) The ability of the yeast form of Aureobasidium pullulans to elaborate exopolysaccharide in chemostat culture at various pH values. Mycol Res 101:650–652. https://doi.org/10.1017/S0953756296003255

    Article  CAS  Google Scholar 

  • Rusinova-Videva S, Pavlova K, Georgieva K (2014) Effect of different carbon sources on biosynthesis of exopolysaccharide from Antarctic strain Cryptococcus Laurentii AL62. Biotechnol Biotechnol Equip 25:80–84. https://doi.org/10.5504/bbeq.2011.0121

    Article  Google Scholar 

  • Rusinova-Videva S, Pavlova K, Metcheva R (2009) Studies of Antarctic yeast isolates for exopolysaccharide synthesis. Biotechnol Biotechnol Equip 23:888–891. https://doi.org/10.1080/13102818.2009.10818565

    Article  Google Scholar 

  • Rusinova-Videva S, Pavlova K, Panchev I, Georgieva K, Kuncheva M (2010) Effect of different factors on biosynthesis of exopolysaccharide from Antarctic yeast. Biotechnol Biotechnol Equip 24:507–511. https://doi.org/10.1080/13102818.2010.10817891

    Article  Google Scholar 

  • Rusinova-Videva S, Nachkova S, Adamov A, Dimitrova-Dyulgerova I (2020) Antarctic yeast Cryptococcus laurentii (AL 65): biomass and exopolysaccharide production and biosorption of metals. J Chem Technol Biotechnol 95:1372–1379. https://doi.org/10.1002/jctb.6321

    Article  CAS  Google Scholar 

  • Sajna KV, Sukumaran RK, Gottumukkala LD, Jayamurthy H, Dhar KS, Pandey A (2013) Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. Int J Biol Macromol 59:84–89. https://doi.org/10.1016/j.ijbiomac.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  • San Blas G, Cunningham WL (1974) Structure of cell wall and exocellular mannans from the yeast Hansenula holstii. I. Mannans produced in phosphate containing medium. Biochim Biophys Acta 354:233–246

    Article  CAS  Google Scholar 

  • Seveiri Mirzaei R, Hamidi M, Delattre C, Rahmani B, Darzi S, Pierre G, Sedighian H (2019) Characterization of the exopolysaccharides from Rhodotorula minuta IBRC-M 30135 and evaluation of their emulsifying, antioxidant and antiproliferative activities. Medical Science 23:381–389

    Google Scholar 

  • Seviour RJ, Stasinopoulos SJ, Auer DP, Gibbs PA (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol 12:279–298

    Article  CAS  Google Scholar 

  • Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydr Res 339:447–460. https://doi.org/10.1016/j.carres.2003.10.034

    Article  CAS  PubMed  Google Scholar 

  • Shuangzhi Z, Zhenming C (2003) A new pullulan-producing yeast and medium optimization for its exopolysaccharide production. J Ocean Univ China 2:53–57

    Article  Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Kannan VR (2019) Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. Int J Biol Macromol 121:55–62. https://doi.org/10.1016/j.ijbiomac.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  • Simova ED, Frengova GI, Beshkova DM (2004) Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a + Lactobacillus bulgaricus 2–11). J Appl Microbiol 97:512–519. https://doi.org/10.1111/j.1365-2672.2004.02316.x

    Article  CAS  PubMed  Google Scholar 

  • Smirnou D et al (2014) Cryptococcus laurentii Extracellular biopolymer production for application in wound management. Appl Biochem Biotechnol 174:1344–1353. https://doi.org/10.1007/s12010-014-1105-x

    Article  CAS  PubMed  Google Scholar 

  • T Sun et al 2020 High-efficiency production of Tremella aurantialba polysaccharide through basidiospore fermentation Bioresour Technol 318https://doi.org/10.1016/j.biortech.2020.124268

  • Ustyuzhanina NE, Kulakovskaya EV, Kulakovskaya TV, Menshov VM, Dmitrenok AS, Shashkov AS, Nifantiev NE (2018) Mannan and phosphomannan from Kuraishia capsulata yeast. Carbohydr Polym 181:624–632. https://doi.org/10.1016/j.carbpol.2017.11.103

    Article  CAS  PubMed  Google Scholar 

  • Van Bogaert IN, De Maeseneire SL, Vandamme EJ (2009) Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi. In: Yeast Biotechnology: Diversity and Applications. pp 651–671 https://doi.org/10.1007/978-1-4020-8292-4_29

  • Vlaev S, Rusinova-Videva S, Pavlova K, Kuncheva M, Panchev I, Dobreva S (2013) Submerged culture process for biomass and exopolysaccharide production by Antarctic yeast: some engineering considerations. Appl Microbiol Biotechnol 97:5303–5313. https://doi.org/10.1007/s00253-013-4864-3

    Article  CAS  PubMed  Google Scholar 

  • Xiu R (1996) Accelerated wound healing. US Patents

  • Xiu R (1997) Stimulator of vascular endothelial cells and use thereof. US Patents

  • Yadav KL, Rahi DK, Soni SK (2014) An indigenous hyperproductive species of Aureobasidium pullulans RYLF-10: influence of fermentation conditions on exopolysaccharide (EPS) production. Appl Biochem Biotechnol 172:1898–1908. https://doi.org/10.1007/s12010-013-0630-3

    Article  CAS  PubMed  Google Scholar 

  • Yildiran H, Basyigit Kilic G, Karahan Çakmakci AG (2019) Characterization and comparison of yeasts from different sources for some probiotic properties and exopolysaccharide production. Food Sci Technol 39:646–653. https://doi.org/10.1590/fst.29818

    Article  Google Scholar 

  • Yurlova NA, De Hoog GS (1997) A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie Van Leeuwenhoek 72:141–147

    Article  CAS  Google Scholar 

  • Yurlova NA, De Hoog GS (2002) Exopolysaccharides and capsules in human pathogenic Exophiala species. Mycoses 45:443–448

    CAS  PubMed  Google Scholar 

  • Yurlova NA, Mokrousov IV, De Hoog GS (1995) Intraspecific variability and exopolysaccharide production in Aureobasidium pullulans. Antonie Van Leeuwenhoek 68:57–63

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Nutrition Research Center, Tabriz University of Medical Sciences (part of Ph.D. thesis, grant No. 1396.09.28, 5D.606013) and Iran National Science Foundation (INSF) (grant number: 97011018).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

B.P.G and A.Y.K. contributed to the study conception and design. Y.R.S. drafted the manuscript. All authors read and gave final approval of the final manuscript.

Corresponding author

Correspondence to Bahram Pourghassem Gargari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahbar Saadat, Y., Yari Khosroushahi, A. & Pourghassem Gargari, B. Yeast exopolysaccharides and their physiological functions. Folia Microbiol 66, 171–182 (2021). https://doi.org/10.1007/s12223-021-00856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-021-00856-2

Keywords

Navigation