Skip to main content

Advertisement

Log in

Biofilm formation, antibiotic susceptibility and RAPD genotypes in Pseudomonas aeruginosa clinical strains isolated from single centre intensive care unit patients

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The aim of this study was to analyse genotypes, antimicrobial susceptibility patterns and serotypes in Pseudomonas aeruginosa clinical strains, including the clonal dissemination of particular strains throughout various intensive care units in one medical centre. Using random amplified polymorphic DNA (RAPD–PCR) and P. aeruginosa antisera, 22 different genotypes and 8 serotypes were defined among 103 isolates from 48 patients. No direct association between P. aeruginosa strain genotypes and serotypes was observed. RAPD typing in strains with the same serotype revealed different genotypes and, on the contrary, most strains with a different serotype displayed the same amplification pattern. The resulting banding patterns showed a high degree of genetic heterogeneity among all isolates from the patients examined, suggesting a non-clonal relationship between isolates from these patients. A higher degree of antibiotic resistance and stronger biofilm production in common genotypes compared to rare ones and genetic homogeneity of the most resistant strains indicated the role of antibiotic pressure in acquiring resistant and more virulent strains in our hospital. In conclusion, genetic characterisation of P. aeruginosa strains using RAPD method was shown to be more accurate in epidemiological analyses than phenotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi H, Maleknia S, Tabaraie B et al (2010) Serotyping and cross-reactivity’s between different Pseudomonas aeruginosa isolates prevalent in Iran. Iran J Microbiol 2:85–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnini S, Dodi C, Campa M (2004) Enhanced resolution of random amplified polymorphic DNA genotyping of Pseudomonas aeruginosa. Lett Appl Microbiol 39:274–277

    Article  CAS  PubMed  Google Scholar 

  • Bouza E, Garcia-Garrote F, Cercenado E et al (1999) Pseudomonas aeruginosa: a survey of resistance in 136 hospitals in Spain. Antimicrob Agents Chemother 43:981–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean CR, Franklund CV, Retief JD et al (1999) Characterization of the serogroup O11 O-antigen locus of Pseudomonas aeruginosa PA103. J Bacteriol 181:4275–4284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delden CH, Iglewski BH (1998) Cell-to-cell signalling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Deligianni E, Pattison S, Berrar D et al (2010) Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol 10:1471–2180

    Article  Google Scholar 

  • Extremina CI, Costa L, Aguiar AI, Peixe L, Fonseca AP (2011) Optimization of processing conditions for the quantification of enterococci biofilms using microtitre-plates. J Microbiol Methods 84:167–173

    Article  CAS  PubMed  Google Scholar 

  • Fonseca AP, Correia P, Sousa JC et al (2007) Association patterns Pseudomonas aeruginosa clinical isolates as revealed by virulence traits, antibiotic resistance, serotype and genotype. FEMS Immunol Med Microbiol 51:505–516

    Article  CAS  PubMed  Google Scholar 

  • Gasink LB, Fishman NO, Weiner MG et al (2006) Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. Am J Med 119:526.e19–526.e25

    Article  Google Scholar 

  • Kalferstova L, Vilimovska Dedeckova K, Antuskova M, Melter O, Drevinek P (2016) How and why to monitor Pseudomonas aeruginosa infections in the long term at a cystic fibrosis centre. J Hosp Infect 92:54–60

    Article  CAS  PubMed  Google Scholar 

  • Koutsogiannou M, Drougka E, Liakopoulos A et al (2013) Spread of multidrug-resistant Pseudomonas aeruginosa clones in a university hospital. J Clin Microbiol 51:665–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert PA (2002) Mechanism of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95:22–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahenthiralingam E, Campbell M, Foster J et al (1996) Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 34:1129–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matar GM, Chaar MH, Araj GF et al (2005) Detection of highly prevalent and potentially virulent strain of Pseudomonas aeruginosa from nosocomial infections in a medical center. BMC Microbiol 5:1471–2180

    Article  Google Scholar 

  • Müller-Premru M, Gubina M (2000) Serotype, antimicrobial susceptibility and clone distribution of Pseudomonas aeruginosa in a university hospital. Zentralblatt für Bakteriologie: Int J Med Microbiol 289(8):57–67

    Article  Google Scholar 

  • Nanvazadeh F, Khosravi AD, Zolfaghari MR, Parhizgari N (2013) Genotyping of Pseudomonas aeruginosa strains isolated from burn patients by RAPD-PCR. Burns 39:1409–1413

    Article  PubMed  Google Scholar 

  • Nazik H, Ongen B, Erturan Z et al (2007) Genotype and antibiotic susceptibility patterns of Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolated from cystic fibrosis patients. Jpn J Infect Dis 60:82–86

    CAS  PubMed  Google Scholar 

  • Nemec A, Krizova L, Maixnerova M et al (2010) Multidrug-resistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res Microbiol 161:234–242

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LH, Hsu DI, Ganapathy V et al (2008) Reducing empirical use of fluoroquinolones for Pseudomonas aeruginosa infections improves outcome. J Antimicrob Chemother 61:714–720

    Article  CAS  PubMed  Google Scholar 

  • Nouér SA, Nucci M, de Oliveira MP et al (2005) Risk factors for acquisition of multidrug-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. Antimicrob Agents Chemother 49:3663–3667

    Article  PubMed  PubMed Central  Google Scholar 

  • Obritsch MD, Fish DN, MacLaren R et al (2005) Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353–1364

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Herrera M, Gerónimo-Gallegos A, Cuevas-Schacht F et al (2004) RAPD-PCR characterization of Pseudomonas aeruginosa strains obtained from cystic fibrosis patients. Salud Publ Mex 46:149–157

    Google Scholar 

  • Ouellet MM, Leduc A, Nadeau C, Barbeau J, Charette SJ (2015) Pseudomonas aeruginosa isolates from dental unit waterlines can be divided in two distinct groups, including one displaying phenotypes similar to isolates from cystic fibrosis patients. Front Microbiol 5:802. doi:10.3389/fmicb.2014.00802

    Article  PubMed  PubMed Central  Google Scholar 

  • Paramythiotou E, Lucet JC, Timsit JF et al (2004) Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 38:670–677

    Article  PubMed  Google Scholar 

  • Patzer J, Dzierzanowska D (1991) The resistance patterns and serotypes of Pseudomonas aeruginosa strains isolated from children. J Antimicrob Chemother 28:869–875

    Article  CAS  PubMed  Google Scholar 

  • Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 297:277–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirnay JP, De Vos D, Cochez C et al (2003) Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol 41:1192–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renders N, Römling U, Verbrugh H et al (1996) Comparative typing of Pseudomonas aeruginosa by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. J Clin Microbiol 34:3190–3195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanović S, Vuković D, Hola V et al (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899

    Article  PubMed  Google Scholar 

  • Tam VH, Rogers CA, Chang KT et al (2010) Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob Agents Chemother 54:3717–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trautmann M, Bauer C, Schumann C et al (2006) Common RAPD pattern of Pseudomonas aeruginosa from patients and tap water in a medical intensive care unit. Int J Hyg Environ Health 209:325–331

    Article  CAS  PubMed  Google Scholar 

  • Wolska K, Kot B, Jakubczak A (2011) Phenotypic and genotypic diversity of Pseudomonas aeruginosa strains isolated from hospitals in Siedlce (Poland). BJM 43:274–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Freiberger.

Ethics declarations

Funding

This work was supported by the grant of Ministry of Health, CZ, [16-31593A], and the internal grant of the Centre for Cardiovascular Surgery and Transplantation Brno, CZ [201404].

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaněrková, M., Mališová, B., Kotásková, I. et al. Biofilm formation, antibiotic susceptibility and RAPD genotypes in Pseudomonas aeruginosa clinical strains isolated from single centre intensive care unit patients. Folia Microbiol 62, 531–538 (2017). https://doi.org/10.1007/s12223-017-0526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-017-0526-7

Keywords

Navigation