Skip to main content
Log in

Species identification of strains belonging to genus Citrobacter using the biochemical method and MALDI-TOF mass spectrometry

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Strains of genus Citrobacter (152 isolates from 1950 to 1988 deposited in the Czech National Collection of Type Cultures, Prague) were re-classified using biological and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) methods. One-hundred thirty-six strains (ca. 90 %) were identified to the species level using the biological method with evaluation by Farmer matrix. MALDI-TOF MS exhibited better identification capability, the data being more compact; the method was unambiguously successful in typing 145 (95 %) strains. Comparison of the results of identification by the two methods revealed differences (for 12 samples) in identified species which, considering all biochemical and/or MS characteristics, could be attributed to the natural variability of strains and close relation of the misidentified species (all of them belonged to the Citrobacter freundii complex). Taking into account all the above data, both methods can be considered reliable; however, the MALDI-TOF MS exhibits higher accuracy, efficiency, and rapidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry

ONPG:

4-Nitrophenyl-β-d-galactopyranoside

References

  • Arens S, Verhaegen J, Verbist L (1997) Differentiation and susceptibility of Citrobacter isolates from patients in a university hospital. Clin Microbiol Infect 3:53–57

    Article  PubMed  Google Scholar 

  • Becker B et al (2009) An evaluation of the use of three phenotypic test-systems for biochemical identification of Enterobacteriaceae and Pseudomonadaceae. Food Control 20:815–821

    Article  CAS  Google Scholar 

  • Borenshtein D, Schauer DB (2006) The genus Citrobacter, pp. 90–98 in Dwarkin M et al (Eds): The Prokaryotes, 3rd ed, Vol 6: Proteobacteria: Gamma Subclass. Springer

  • Brenner DJ, Grimont PA, Steigerwalt AG, Fanning GR, Ageron E, Riddle CF (1993) Classification of citrobacteria by DNA hybridization: designation of Citrobacter farmeri sp. nov., Citrobacter youngae sp. nov., Citrobacter braakii sp. nov., Citrobacter werkmanii sp. nov., Citrobacter sedlakii sp. nov., and three unnamed Citrobacter genomospecies. Int J Syst Bacteriol 43:645–658

    Article  CAS  PubMed  Google Scholar 

  • Brenner DJ, O’Hara CM, Grimont PA, Janda JM, Falsen E, Aldova E, Ageron E, Schindler J, Abbott SL, Steigerwalt AG (1999) Biochemical identification of Citrobacter species defined by DNA hybridization and description of Citrobacter gillenii sp. nov. (formerly Citrobacter genomospecies 10) and Citrobacter murliniae sp. nov. (formerly Citrobacter genomospecies 11). J Clin Microbiol 37:2619–2624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delgado G, Souza V, Morales R, Cerritos R, Gonzalez-Gonzalez A et al (2013) Genetic characterization of atypical Citrobacter freundii. PLoS ONE 8(9):e74120. doi:10.1371/journal.pone.0074120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ezaki T (2010) Evaluation of functional gene for classification of pathogenic bacteria. http://www.iccc12.info/presentations/tezaki.pdf

  • Farmer JJ III (2003) Enterobacteriaceae: Introduction and Identification, in Manual of Clinical Microbiology, 8th ed, pp 636–653

  • Ferreira L, Sánchez-Juanes F, González-Ávila M, Cembrero-Fuciños D, Herrero-Hernández A, González-Buitrago JM, Muñoz-Bellido JL (2010) Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 48:2110–2115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavin PJ et al (2002) Evaluation of the Vitek 2 System for rapid identification of clinical isolates of Gram-negative bacilli and members of the family Streptococcaceae. Eur J Clin Microbiol Infect Dis 21:869–874

    CAS  PubMed  Google Scholar 

  • Giammanco GM, Aleo A, Guida I, Mammina C (2011) Molecular epidemiological survey of Citrobacter freundii misidentified as Cronobacter spp. (Enterobacter sakazakii) and Enterobacter hormaechei isolated from powdered infant milk formula. Foodborne Pathogens Dis 8(4):517–525

    Article  CAS  Google Scholar 

  • Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y (2014) Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis 6:534–538

    PubMed Central  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hedegaard J et al (1999) Identification of Enterobacteriaceae by partial sequencing of the gene encoding translation initiation factor 2. Int J Syst Bacteriol 49:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Holt JG et al (1994) (Eds): Bergey’s Manual of Determinative Bacteriology, 9th Ed. Lippincott Williams & Wilkins

  • Iversen C, Waddington M, On SLW, Forsythe S (2004) Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter species. J Clin Microbiol 42(11):5368–5370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janda JM, Abbott SL, Cheung WK, Hanson DF (1994) Biochemical identification of citrobacteria in the clinical laboratory. J Clin Microbiol 32(8):1850–1854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khot PD, Couturier MR, Wilson A, Croft A, Fisher MA (2012) Optimization of matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis for bacterial identification. J Clini Microbiol 50:3845–3852

    Article  CAS  Google Scholar 

  • Lapage SP, Bascomb S, Willcox WR, Curtis MA (1970) Computer identification of bacteria. In: Baille A, Gilbert RJ (eds) Automatisation. Mechanization and Data Handling in Microbiology. Academic Press, London, pp 1–22

    Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:2795–2799

    Google Scholar 

  • Murray PR, Holmes B, Auken HM (2005) Citrobacter, Klebsiella, Enterobacter, Serratia, and other Enterobacteriaceae. In: Borriello SP, Murray R, Funke G (eds) Topley and Wilson’s microbiology and microbial infections (10th ed), bacteriology Vol 2. ASM Press, Washigton (DC), pp 1474–1506

    Google Scholar 

  • O’Hara MC, Roman SB, Miller JM (1995) Ability of commercial identification systems to identify newly recognized species of Citrobacter. J Clin Microbiol 33:242–245

    PubMed Central  PubMed  Google Scholar 

  • O’Hara MC, Weinstein MP, Miller JM (2003) Manual and Automated Systems for Detection and Identification of Microorganisms, in Manual of Clinical Microbiology (8th ed), pp 185-207

  • Ogunshe AA, Fawole AO, Ajayi VA (2010) Microbial evaluation and public health implications of urine as alternative therapy in clinical pediatric cases: health implication of urine therapy. Pan Afr Med J 25(5):12

    Google Scholar 

  • Paradis S et al (2005) Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase b-subunit. Int J Syst Evol Microbiol 55:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Roggenkamp A (2007) Phylogenetic analysis of enteric species of the family Enterobacteriaceae using the oriC-locus. Syst Appl Microbiol 30:180–188

    Article  CAS  PubMed  Google Scholar 

  • Schaumann R, Knoop N, Genzel GH, Losensky K, Rosenkranz C, Stîngu CS, Schellenberger W, Rodloff AC, Eschrich K (2013) Discrimination of Enterobacteriaceae and non-fermenting Gram negative bacilli by MALDI-TOF mass spectrometry. Open Microbiol J 7:118–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  PubMed  Google Scholar 

  • Shahid M (2010) Citrobacter spp. simoultaneously harboring blaCTX-M, blaTEM, blaSHV, blaampC, and insertion sequences IS26 and orf513: an evolutionary phenomenon of recent concern for antibiotic resistance. J Clin Microbiol 48:1833–1838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Underwood S, Avison MB (2004) Citrobacter koseri and Citrobacter amalonaticus isolates carry highly divergent β-lactamase genes despite having high levels of biochemical similarity and 16S rRNA sequence homology. J Antimicrob Chemother 53:1076–1080

    Article  CAS  PubMed  Google Scholar 

  • van Veen SQ, Claas ECJ, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization–time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed Central  PubMed  Google Scholar 

  • Willcox WR, Lapage SP, Bascomb S, Curtis MA (1973) Identification of bacteria by computer: theory and programming. J Gen Microbiol 77:317–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The forth author (J. Hrabák) was partially supported by the Charles University Research Fund (project number P36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renáta Kolínská.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolínská, R., Španělová, P., Dřevínek, M. et al. Species identification of strains belonging to genus Citrobacter using the biochemical method and MALDI-TOF mass spectrometry. Folia Microbiol 60, 53–59 (2015). https://doi.org/10.1007/s12223-014-0340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0340-4

Keywords

Navigation