Skip to main content
Log in

The phylogenetic structure of microbial biofilms and free-living bacteria in a small stream

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The phylogenetic composition, bacterial biomass, and biovolume of both planktonic and biofilm communities were studied in a low-order Bystřice stream near Olomouc City, in the Czech Republic. The aim of the study was to compare the microbial communities colonizing different biofilm substrata (stream aggregates, stream sediment, underwater tree roots, stream stones, and aquatic macrophytes) to those of free-living bacteria. The phylogenetic composition was analyzed using fluorescence in situ hybridization for main phylogenetic groups. All phylogenetic groups studied were detected in all sample types. The stream stone was the substratum where nearly all phylogenetic groups were the most abundant, while the lowest proportion to the DAPI-stained cells was found for free-living bacteria. The probe specific for the domain Bacteria detected 20.6 to 45.8 % of DAPI-stained cells while the probe specific for the domain Archaea detected 4.3 to 17.9 %. The most abundant group of Proteobacteria was Alphaproteobacteria with a mean of 14.2 %, and the least abundant was Betaproteobacteria with a mean of 11.4 %. The average value of the CytophagaFlavobacteria group was 10.5 %. Total cell numbers and bacterial biomass were highest in sediment and root biofilm. The value of cell biovolume was highest in stone biofilm and lowest in sediment. Overall, this study revealed relevant differences in phylogenetic composition, bacterial biomass, and biovolume between different stream biofilms and free-living bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FLB:

Free-living bacteria

AGR:

Macroscopic stream aggregates

SED:

Stream sediment

STN:

Stream stone

ROT:

Riparian underwater roots

PLT:

Water buttercup leaves

DAPI:

4′,6-Diamidino-2-phenylindole, fluorescent dye

Cy3:

Indocarbocyanine fluorescent dye

FISH:

Fluorescence in situ hybridization

References

  • Amalfitano S, Fazi S (2008) Recovery and quantification of bacterial cells associated with streambed sediments. J Microbiol Methods 75:237–243

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990a) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  • Amann RI, Krumholz L, Stahl DA (1990b) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Arino X, Saiz-Jimenez C (1996) Factors affecting the colonization and distribution of cyanobactera, algae and lichens in ancient mortars. In: Riederer J (ed) Proceedings of the eighth international congress on deterioration and conservation of stone. Rathgen Forschungslabor, Berlin, pp 725–731

    Google Scholar 

  • Augspurger C, Gleixner G, Kramer C, Kusel K (2008) Tracking carbon flow in a 2-week-old and 6-week-old stream biofilm food web. Limnol Oceanogr 53:642–650

    Article  CAS  Google Scholar 

  • Battin TJ, Wille A, Sattler B, Psenner R (2001) Phylogenetic and functional heterogenity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67:799–807

    Article  PubMed  CAS  Google Scholar 

  • Bertoni R, Callieri C, Corno G, Rasconi S, Caravati E, Contesini M (2010) Long term trends of epilimnetic and hypolimnetic bacteria and organic carbon in a deep holo-oligomictic lake. Hydrobiologia 644:279–287

    Article  CAS  Google Scholar 

  • Bjerkan G, Witso E, Bergh K (2009) Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthopaedica 80:245–250

    Article  PubMed  Google Scholar 

  • Böckelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates (“River snow”) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170

    Article  Google Scholar 

  • Boenigk J (2004) A disintegration method for direct counting of bacteria in clay-dominated sediments: dissolving silicates and subsequent fluorescent staining of bacteria. J Microbiol Methods 56:151–159

    Article  PubMed  CAS  Google Scholar 

  • Boureau T, Jacques MA, Berruyer R, Dessaux Y, Dominguez H, Morris CE (2003) Comparison of the phenotypes and genotypes of biofilm and solitary epiphytic bacterial populations on broad-leaved endive. Microb Ecol 47:87–95

    Google Scholar 

  • Bouvier T, Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15

    Article  PubMed  CAS  Google Scholar 

  • Bratbak G (1985) Bacterial biovolume and biomass estimations. Appl Environ Microbiol 49:1488–1493

    PubMed  CAS  Google Scholar 

  • Brümmer IHM, Fehr W, Wagner-Dobler I (2000) Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle. Appl Environ Microbiol 66:3078–3082

    Article  PubMed  Google Scholar 

  • Buesing N, Gessner MO (2002) Comparison of detachment procedures for direct counts of bacteria associated with sediment particles, plant litter and epiphytic biofilms. Aquat Microb Ecol 27:29–36

    Article  Google Scholar 

  • Chrost RJ, Koton M, Siuda W (2000) Bacterial secondary production and bacterial biomass in four Mazurian lakes of differing trophic status. Polish J Environ Stud 9:255–266

    CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    Article  PubMed  CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2003) Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Oceanogr 48:168–178

    Article  Google Scholar 

  • Crump BC, Armbrust EV, Barros JA (1999) Phylogenetic analysis of particle attached bacteria and free-living bacterial communities in the Columbia river, its estuary and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    PubMed  CAS  Google Scholar 

  • Dakora DF, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Eggert SL, Wallace JB (2007) Wood biofilm as a food resource for stream detritivores. Limnol Oceanogr 52:1239–1245

    Article  Google Scholar 

  • Eisenmann H, Burgherr P, Meyer EI (1999) Spatial and temporal heterogenity of an epilithic streambed community in relation to the habitat templet. Can J Fish Aquat Sci 56:1452–1460

    Google Scholar 

  • Fazi S, Amalfitano S, Pernthaler J, Puddu A (2005) Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ Microbiol 10:1633–1640

    Article  Google Scholar 

  • Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55

    Article  CAS  Google Scholar 

  • Gillan DC, Danis B, Pernet P, Joly G, Dubois P (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 71:679–690

    Article  PubMed  CAS  Google Scholar 

  • Golladay SW, Sinsabaugh RL (1991) Biofilm development on leaf and wood surfaces in a boreal river. Freshw Biol 25:437–450

    Article  CAS  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Physiological and community responses of established grassland bacterial populations to water stress. Appl Environ Microbiol 69:6961–6968

    Article  PubMed  CAS  Google Scholar 

  • Grossart HP, Ploug H (2000) Bacterial production and growth efficiencies: direct measurement on riverine aggregates. Limnol Oceanogr 45:436–445

    Article  CAS  Google Scholar 

  • Haglund AL, Lantz P, Tornblom E, Tranvik L (2003) Depth distribution of active bacteria and bacterial activity in lake sediment. FEMS Microbiol Ecol 46:31–38

    Article  PubMed  CAS  Google Scholar 

  • Hempel M, Blume M, Blindow I, Gross EM (2008) Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. Microbiology 8:1–10

    Google Scholar 

  • Hintze J (2007) NCSS 2007. NCSS, LLC. Kaysville, Utah, USA

  • Jones PR, Cottrell M, Kirchman DL, Dexter SC (2006) Bactrial community structure of biofilms on artificial surfaces in an estuary. Microb Ecol 53:153–162

    Article  PubMed  Google Scholar 

  • Kang JI, Goulder R (1996) Epiphytic bacteria downstream of sewage-works outfalls. Wat Res 30:501–510

    Article  CAS  Google Scholar 

  • Kirchman DL, Yu L, Cottrell MT (2003) Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware estuary. Appl Environ Microbiol 69:6587–6596

    Article  PubMed  CAS  Google Scholar 

  • Kloep F, Manz W, Roske I (2006) Multivariate analysis of microbial communities in the River Elbe (Germany) on different phylogenetic and spatial levels of resolution. FEMS Microbiol Ecol 56:9–94

    Article  Google Scholar 

  • Koutný J, Rulík M (2007) Hyporheic biofilm particulate organic carbon in a small lowland stream (Sitka, Czech Republic): structure and distribution. Int Rev Hydrobiol 92:402–412

    Article  Google Scholar 

  • Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38:1665–1672

    Article  CAS  Google Scholar 

  • Lamberti GA, Gregory SV, Ashkenas LR, Wildman RC, Moore KMS (1991) Stream ecosystem recovery following a catastrophic debris flow. Can J Fish Aquat Sci 48:196–208

    Article  Google Scholar 

  • Lehman RM, Colwell FS, Bala GA (2001) Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl Environ Microbiol 67:2799–2809

    Article  PubMed  CAS  Google Scholar 

  • Lock MA (1994) Attached microbial communities in rivers. In: Ford TE (ed) Aquatic microbiology—an ecological approach. Blackwell, Oxford, pp 113–138

    Google Scholar 

  • Lucker S, Doris S, Kasper U, Kjeldsen B, MacGregor BJ, Wagner M, Loy A (2002) Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. Appl Environ Microbiol 68:5064–5081

    Article  Google Scholar 

  • Manz W, Amann RI, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Manz W, Amann RI, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga flavobacter bacteroides in the natural environment. Microbiology 142:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Manz W, Wendt-Poohoff K, Neu TR, Szewzyk U, Lawrence JR (1999) Phylogenetic composition, spatial structure and dynamics of lotic bacterial biofilms investigated by fluorescent in situ hybridization and confocal laser scanning microscopy. Microb Ecol 37:137–155

    Article  Google Scholar 

  • McNamara CJ, Leff LG (2004) Bacterial community composition in biofilms on leaves in a northeastern Ohio stream. J N Am Bentholl Soc 23:677–685

    Article  Google Scholar 

  • Meyer JL, Likens GE, Sloane J (1981) Phosphorus, nitrogen, and organic carbon flux in a headwater stream. Arch Hydrobiol 91:28–44

    CAS  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  PubMed  CAS  Google Scholar 

  • Norland S (1993) The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, New Jersey, pp 303–307

    Google Scholar 

  • Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JV, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792

    Article  PubMed  CAS  Google Scholar 

  • Olapade OA, Depas MM, Jensen ET, McLellan SL (2006) Microbial communities and fecal indicator bacteria associated with Cladophora mats on beach sites along Lake Michigan shores. Appl Environ Microbiol 72:1932–1938

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler J, Glöckner FO, Schönhuber W, Amann RI (2001) Fluorescence in situ hybridization. In: Paul J (ed) Methods in microbiology—marine microbiology vol. 30. Academic Press Ltd, London

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Raskin L, Stromley JM, Rittman BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    PubMed  CAS  Google Scholar 

  • Romaní AM, Giorgi A, Acuna V, Sabater S (2004) The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnol Oceanogr 49:1713–1721

    Article  Google Scholar 

  • Schweitzer B, Huber I, Amann RI, Ludwig W, Simon M (2001) α- and β-Proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi F, Zippel B, Neu TR, Arp G (2008) In situ detection of bacteria in calcified biofilms using FISH and CARD–FISH. J Microbiol Methods 75:103–108

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Azam F (1989) Protein-content and protein-synthesis rates of planktonic marine bacteria. Mar Ecol Progr Ser 51:201–213

    Article  CAS  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Vadeboncouer Y, Lodge DM (2000) Periphyton production on wood and sediment: substratum-specific response to laboratory and whole-lake nutrient manipulations. J N Am Bentholl Soc 19:68–81

    Article  Google Scholar 

  • Whiteley AS, Griffiths RI, Bailey MJ (2003) Analysis of the microbial functional diversity within water stressed soil communities by flow cytometric analysis and CTC+ cell sorting. J Microbiol Methods 54:257–267

    Article  PubMed  Google Scholar 

  • Wilmes P, Remis J, Hwang M, Auer M, Thelen MP, Banfield JF (2009) Natural acidophilic biofilm communities reflect distinct organismal and functional organization. ISME J 3:266–270

    Article  PubMed  CAS  Google Scholar 

  • Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Roske I (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol Ecol 46:331–347

    Article  PubMed  CAS  Google Scholar 

  • Zubkov MV, Sleigh MA (2000) Comparison of growth efficiencies of protozoa growing on bacteria on surfaces and in suspension. J Eukaryot Microbiol 47:62–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The methods which required use of epifluorescence microscope were made available to us by the Department of Botany, Palacky University. We thank all the staff of this department for their cooperation. Mr. Simon Hooper and Mr. Alex Outlon are acknowledged for language correction, and the reviewers who amended the final version of the manuscript are thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Brablcová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brablcová, L., Buriánková, I., Badurová, P. et al. The phylogenetic structure of microbial biofilms and free-living bacteria in a small stream. Folia Microbiol 58, 235–243 (2013). https://doi.org/10.1007/s12223-012-0201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-012-0201-y

Keywords

Navigation