Skip to main content
Log in

Algal diversity in flowing waters at an acidic mine drainage “barrens” in central Pennsylvania, USA

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Microscopic investigations were undertaken to decipher the diversity in the lotic algal communities from acidic waters (pH 2.4–3.2) flowing overland in sheets and channels at an acid mine drainage (AMD) barrens near Kylertown, PA, USA. Microscopic observations, supplemented with taxonomic keys, aided in identification of the dominant algae, and measurement of carbon from adjacent soils was undertaken. The unicellular protist Euglena sp. was most abundant in slower flowing waters (i.e., pool near point of emergence and surficial flow sheets), while Ulothrix sp. was most abundant in faster flowing water from the central stream channel. A diverse range of unicellular microalgae such as Chlorella, Cylindrocystis, Botryococcus, and Navicula and several filamentous forms identified as Microspora, Cladophora, and Binuclearia were also recorded. The observed high algal diversity may be related to the long duration of AMD flow at this site which has led to the development of adapted algal communities. The comparatively higher carbon content in soil materials adjacent to slower flowing water sampling locations provides evidence for the important role of algae as primary producers in this extreme environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microb Ecol 44:1–14

    Article  Google Scholar 

  • Baker BJ, Hugenholtz P, Dawson SC, Banfield JF (2003) Extremely acidophilic protists from acid mine drainage host Rickettsiales-lineage endosymbionts that have intervening sequences in their 16S rRNA genes. Appl Environ Microbiol 69:5512–5518

    Google Scholar 

  • Baker BJ, Tyson GW, Gooseherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilms communities. Appl Environ Microbiol 75:2192–2199

    Article  PubMed  CAS  Google Scholar 

  • Bond Pl, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial predominantly lithotrophic biofilms at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  PubMed  CAS  Google Scholar 

  • Brake SS, Dannelly HK, Connors KA (2000) Controls on the nature and distribution of an alga in coal mine-waste environments and its potential impact on water quality. Environ Geol 40:458–469

    Article  Google Scholar 

  • Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43:883–894

    Article  PubMed  CAS  Google Scholar 

  • De Bary A (1858) Untersuchungen über die Familie der Conjugaten (Zygnemeen und Desmidieen) Ein Beitrag zur physiologischen und beschreibenden Botanik. pp. 1–91. Leipzig

  • Deniseger J, Austin A, Lucey WP (1986) Periphyton communities in a pristine mountain stream above and below heavy metal mining operations. Freshwat Biol 16:209–218

    Article  CAS  Google Scholar 

  • Druschel GK, Baker BJ, Gihring TM, Banfield JF (2009) Biogeochemistry of acid mine drainage at Iron Mountain, California. Geochem Trans 5:13–32

    Article  Google Scholar 

  • Druschel GK, Sutka R, Emerson D, Luther GW, Kraiya C, Glazer B (2004) Voltammetric investigation of Fe–Mn–S species in a microbially active wetland. In: Wanty RB, Seal RR (eds.), Eleventh International Symposium on Water–Rock Interaction WRI-11. Balkema: Saratoga Springs, New York, USA, pp 1191–1194

  • Duggan LA, Wildeman TR, Updegraff DM (1992) The aerobic removal of manganese from mine drainage by an algal mixture containing Cladophora. p. 241–248. In: Proc. American Society for Surface Mining and Reclamation Conference, May 14–17, 1992, Duluth

  • Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variatons in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632

    PubMed  CAS  Google Scholar 

  • Ehrenberg CG (1830) Beiträge zur Kenntnis der Organisation der Infusorien und ihrer geographischen Verbreitung, besonders in Sibirien. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1832 1–88, pls. I-VIII

  • Foster PL (1982) Species associations and metal contents of algae from rivers polluted by heavy metals. Freshwat Biol 12:17–39

    Article  CAS  Google Scholar 

  • Gerber DW, Burris JE, Sone RW (1985) Wetlands and water management on mined lands. The Pennsylvania State University, University Park

    Google Scholar 

  • Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic metal-rich mine waters in North Wales consist of novel and remarkably simple bactterial communities. Appl Environ Microbiol 72:2022–2030

    Article  PubMed  CAS  Google Scholar 

  • Komárek J, Fott B (1983) Chlorophyceae (Grün algen) Ordung: Chlorococcales. In: Huber-Pestalozii, G. (ed.), Das Phytoplankton des Süsswassers, Die Binnengewässer 16, 7/1, pp. 1–1044

  • Kusel-Fetzmann I, Weidinge M (2008) Ultrastructure of five Euglena species positioned in the subdivision Serpentes. Protoplasma 233:209–222

    Article  PubMed  Google Scholar 

  • Kützing FT (1833) Süsswasseralgen aus Geichenland. Ber dtsch Bot Ges 61:250–270

    Google Scholar 

  • Kützing FT (1843) Phycologia Generalis. Leipzig

  • Kützing FT (1849) Species Algarum. A. Förstnersche Buchhandlung, Leipzig

    Google Scholar 

  • Kützing FT (1865) Die kieselschaligen, Bacillarien oder Diatomeen. Nordhausen, Verlag von Ferd, Főrstemann

    Google Scholar 

  • Lampkin AJ, Summerfield MR (1982) Algal distribution in a small intermittent stream receiving acid mine drainage. J Phycol 18:196–199

    Article  CAS  Google Scholar 

  • Lupton MK (2008) Revegetation of an acid mine drainage-impacted soil using low rates of lime and compost. M.S. Thesis, The Pennsylvania State University, University Park, pp 94

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Methods of soil analysis, part 3—chemical methods. Soil Science Society of America, Madison, pp 961–1010

    Google Scholar 

  • Ledin, Pedersen (1996) The environmental impact of mine wastes-Roles of microorganisms and their significance in trestment of mine wastes. Earth Sci Rev 41:67–108

    Article  CAS  Google Scholar 

  • Novis PM (2004) A taxonomic survey of Microspora (Chlorophyceae, Chlorophyta) in New Zealand. New Zeal J Bot 42:153–165

    Article  Google Scholar 

  • Olaveson MM, Nalewajko C (2000) Effects of acidity on the growth of two Euglena sp. Hydrobiologia 233:39–56

    Article  Google Scholar 

  • Ramanathan KR (1964) Ulotrichales. ICAR, New Delhi

    Google Scholar 

  • Senko JM, Zhang G, Mcdonough JT, Bruns MAB, Burgos WB (2009) Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiol J 26:71–82

    Article  CAS  Google Scholar 

  • Thuret G (1850) Recherches sur les zoospores des algues et les antheridies des cryptogames Premiere partie. Ann Sci Nat Bot Ser Iii 14:214–260

    Google Scholar 

  • Verb, Vis (2005) Periphyton assemblages as bioindicators of mine drainage in unglaciated Western Allegheny Plateau lotic systems. Water Air Soil Pollut 161:227–265

    Article  CAS  Google Scholar 

  • Warner RW (1971) Distribution of biota in a stream polluted by acid mine drainage. Ohio J Sci 71:202–215

    Google Scholar 

  • Wittrock VB (1887) Om Binuclearia, ett nytt Confervace-slägte. Bi h Svensk Vetensk Akad Handl 12:1–10

    Google Scholar 

  • Zettler LAA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the National Agricultural Innovation Project, funded by Indian Council for Agricultural Research, New Delhi, for providing the funds for undertaking research work at the Department of Crop and Soil Sciences, Penn State University, State College, Pennsylvania, USA, under the Human Resources Development Program. The authors are also grateful to the Department of Crop and Soil Sciences, Penn State University, State College, PA, USA, for providing the necessary facilities. The senior author is also grateful to the Director, Indian Agricultural Research Institute, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasanna, R., Ratha, S.K., Rojas, C. et al. Algal diversity in flowing waters at an acidic mine drainage “barrens” in central Pennsylvania, USA. Folia Microbiol 56, 491–496 (2011). https://doi.org/10.1007/s12223-011-0073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-011-0073-6

Keywords

Navigation