Skip to main content
Log in

Effects of mancozeb and other dithiocarbamate fungicides on Saccharomyces cerevisiae: the role of mitochondrial petite mutants in dithiocarbamate tolerance

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae as model system was used to evaluate the occurrence of resistant mutants and adaptation mechanism to mancozeb (MZ), a widespread fungicide of the dithiocarbamate class with a broad spectrum of action and multiple cell targets. We were unable to isolate mutants resistant to inhibitory concentration of MZ but found an unusually large number of mitochondrial defective petite mutants among cells incubated in the presence of subinhibitory MZ concentration. Similar results were obtained with two other dithiocarbamate fungicides. Comparison of wild type and petite mutants showed that the latter were more resistant to toxic effects of MZ, highlighting the role of mitochondria in MZ-tolerance. The data suggest that petite cells, arising by exposure to sub-inhibitory MZ concentration, are not induced by fungicides but are spontaneous mutants already present in the population before the contact with the fungicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTC(s):

dithiocarbamate(s)

EtBr:

ethidium bromide

MIC:

minimum inhibitory concentration

MR:

metiram

MTC(l):

mitochondria(l)

MZ:

mancozeb

PB:

propineb

WT:

wild type

YPD:

yeast peptone-dextrose medium

YPG:

yeast peptone-glycerol medium

References

  • Br∁o N., Tenreiro S., Viegas C.A., Sá-Correira I.: FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on pdr3 transcription regulation. Yeast15, 1595–1608 (1999).

    Article  Google Scholar 

  • Buck J.W., Burpee L.L.: The effects of fungicides on the phylloplane populations of creeping bentgrass. Can.J.Microbiol.48, 522–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Cabras P., Angioni A.: Pesticide residues in grapes, wine, and their processing products. J.Agric.Food Chem.48, 967–973 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Calviello G., Piccioni E., Boninsegna A., Tedesco B., Maggiano N., Serini S., Wolf F.I., Palozza P.: DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol.Appl.Pharmacol.211, 87–96 (2005).

    Article  PubMed  Google Scholar 

  • Chen X.J., Clark-walker G.D.: The petite mutation in yeasts: 50 years on. Internat.Rev.Cytol.194, 197–238 (2000).

    Article  CAS  Google Scholar 

  • Diala E., Mittwoch U., Wilkie D.: Antimitochondrial effects of thioacetamide and ethylenethiourea in human and yeast cell cultures. Brit.J.Cancer69, 1771–1773 (1980).

    Google Scholar 

  • Dias P.J., Texeira M.C., Telo J.P., Sá-Correira I.: Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide mancozeb in yeast, as suggested by a chemogenomic approach. OMICS J.Integrad.Biol.14, 211–227 (2010).

    Article  CAS  Google Scholar 

  • Domico L.M., Zeevalk G.D., Bernard L.P., Cooper K.R.: Acute neurotoxic effects of mancozeb and maneb in mesencephalic neuronal cultures are associated with mitochondrial dysfunction. Neurotoxicology27, 816–825 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Domico L.M., Cooper K.R., Bernard L.P., Zeevalk G.D.: Reactive oxygen species generation by ethylene-bis-dithiocarbamate (EBCD) fungide mancozeb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology28, 1079–1091 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Elskens M.T., Penninckx M.J.: Thiram and dimethyldithiocarbamic acid interconversion in Saccharomyces cerevisiae: a possible metabolic pathway under the control of the glutathione redox cycle. Appl.Environ.Microbiol.63, 2857–2862 (1997).

    CAS  PubMed  Google Scholar 

  • Fai P.B., Grant A.: A comparative study of Saccharomyces cerevisiae sensitivity against eight yeast species sensitivities to a range of toxicants. Chemosphere75, 289–296 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Fox T.D., Folley L.F., Mulero J.J., Mcmullin T.W., Thorsnes P.E., Hedin L.O., Costanzo M.C.: Analysis and manipulation of yeast mitochondria genes. Methods Enzymol.194, 149–165 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hollomon D.W., Brent K.J.: Combating plant disease — the Darwin connection. Pest.Manag.Sci.65, 1156–1163 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Kato M., Mizubuti E.S., Goodwin S.B., Fry W.E.: Sensitivity to protectant fungicides and pathogenic fitness of phytophtora infestant in the United States. Phytopathology87, 973–978 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Liu Z., Butow R.A.: Mitochondrial retrograde signalling. Ann.Rev.Genet.40, 159–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Maroni M., Colosio C., Ferioli A., Fait A.: Biological monitoring of pesticides exposure: a review. Dithiocarbamate pesticides. Toxicology143, 47–51 (2000).

    Article  Google Scholar 

  • Miles M., Kemmitt G., Valverde P.: Results from two years of field studies to determine Mancozeb based spray programmes with minimal impact on predatory mites in European vine cultivation. Commun.Agric.Appl.Biol.Sci.71, 285–293 (2006).

    CAS  PubMed  Google Scholar 

  • Parnell S., VAN Den BOSCH F., GILLIGAN C.A.: Large-scale fungicide spray heterogeneity and the regional spread of resistant pathogen strains. Phytopathology96, 549–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro I.C., Veríssimo I., Moniz L., Cardoso H., Sousa M.J., Soares A.M.V.M., Leão C.: Yeasts as a model for assessing the toxicity of the fungicides Penconazol, Cymoxanil and Dichlorofluanid. Chemosphere41, 1637–1642 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Rose M.D., Winston F., Hieter P.:Methods in Yeast Genetics: a Laboratory Course Manual, 2nd ed., pp. 177–186. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1990.

    Google Scholar 

  • Santos P.M., Simões T., Sá-Correira I.: Insights into yeast adaptive response to the agricultural fungicide mancozeb: a toxicoproteomics approach. Proteomics9, 657–670 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Southwell R.J., Browns J.F., Welsby S.M.: Microbial interection on the phylloplane of wheat and barley after applications of mancozeb and triadimefon. Austral.Plant Pathol.28, 139–148 (1999).

    Article  Google Scholar 

  • Teixeira M.C., Dias P.J., Simões T., Sá-Correira I.: Yeast adaptation to mancozeb involves up-regulation of FLR1 under the coordinate control of Yap1, RPN4, Pdr3, and Yrr1. Biochem.Biophys.Res.Commun.367, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Zhang X., Moye-rowley W.S.: Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the Fo component of the mithondrial ATPase. J.Biol.Chem.276, 47844–47852 (2001).

    CAS  PubMed  Google Scholar 

  • Zhang J., Fitsanakis V.A., Gu G., Jing D., Ao M., Amarnath V., Montine T.: Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J.Neurochem.84, 336–346 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Casalone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casalone, E., Bonelli, E. & Polsinelli, M. Effects of mancozeb and other dithiocarbamate fungicides on Saccharomyces cerevisiae: the role of mitochondrial petite mutants in dithiocarbamate tolerance. Folia Microbiol 55, 593–597 (2010). https://doi.org/10.1007/s12223-010-0095-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0095-5

Keywords

Navigation