Skip to main content
Log in

Local distribution of ectomycorrhizae-associated basidiomycetes in forest soil correlates with the degree of soil organic matter humification and available electrolytes

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Spatial distribution of ectomycorrhizae-associated basidiomycetes was determined in oakbirch forest using terminal restriction fragment length polymorphism (T-RFLP) analysis. The data were correlated with actual soil humidity, pH, electric conductivity of the soil extract, absorbance A 465 and A 665 of water and alkali soil extracts and with the ratio A 465/A 665 (parameter A4/A6). Natural non-homogeneity of the soil parameters was used as experimental gradient. Distance-based redundancy analysis of the T-RFLP data (with soil parameters being taken as environmental parameters) provided significant results when ITS1F-terminanted restriction fragments were analyzed. Among other fungi, a Mycena galericulata related fungus was observed to correlate negatively with A4/A6, indicating its association with highly humified soil organic matter. Positive association of other, unidentified fungi with A4/A6 was also observed. Several other unidentified fungi negatively correlated with electric conductivity of the soil extract. The results may explain nonhomogeneity of the spatial distribution of the fungi associated with ectomycorrhizae as a result of their interaction with non-homogeneous soil environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A4/A6:

ratio A 465/A 665

BLAST:

basic local alignment search tool

BSA:

bovine serum albumin

dbRDA:

distance-based redundancy analysis

DTT:

1,4-dithiothreitol

ECMe:

ectomycorrhizae

ECMl:

ectomycorrhizal

FAM:

6-carboxyfluorescein

HEX:

6-carboxy-4,7,2′,4′,5′,7′-hexachlorofluorescein

ITS:

internal transcribed spacer (in rRNA gene cassette)

RF:

related fungus

ROX:

6-carboxy-X-rhodamine

SAE:

soil alkali extract

SWE:

soil water extract

TRF(s):

terminal restriction fragment(s)

T-RFLP:

terminal restriction fragment length polymorphism

References

  • Agerer R., Grote R., Raidl S.: The new method ‘micromapping’, a means to study species specific associations and exclusions of ectomycorrhizae. Mycol.Progr.1, 155–166 (2002).

    Article  Google Scholar 

  • Baldrian P.: Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia161, 657–660 (2009).

    Article  PubMed  Google Scholar 

  • Bougoure D.S., Parkin P.I., Cairney J.W.G., Alexander I.J., Anderson I.C.: Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol.Ecol.16, 4624–4636 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Cavender-Bares J., Izzo A., Robinson R., Lovelock C.E.: Changes in ectomycorrhizal community structure on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza19, 133–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Chen Y., Senesi N., Schnitzer M.: Information provided on humic substances by E4/E6 ratios. Soil Sci.Soc.Am.J.41, 352–358 (1977).

    Article  CAS  Google Scholar 

  • Dickie I.A., Xu B., Koide R.E.: Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol.156, 527–535 (2002).

    Article  CAS  Google Scholar 

  • Fernández-toirán L.M., Ágreda T., Olano J.M.: Stand age and sampling year effect on the fungal fruit body community in Pinus pinaster forests in central Spain. Can.J.Bot.84, 1249–1258 (2006).

    Article  Google Scholar 

  • Gardes M., Bruns T.D.: ITS primers with enhanced specificity for basidiomycetes — application to the identification of mycorrhizae and rusts. Mol.Ecol.2, 113–118 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Grant A., Ogilvie L.A.: Terminal restriction fragment length polymorphism data analysis. Appl.Environ.Microbiol.69, 6342–6343 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Gryndler M., Rohlenová J., Kopecký J., Matucha M.: Chloride concentration affects soil microbial community. Chemosphere71, 1401–1408 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M., Enkerli J., Widmer F.: Residual polymerase activity-induced bias in terminal restriction fragment length polymorphism analysis. Environ.Microbiol.9, 555–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Jackson R.B., Caldwell M.M.: Geostatistical patterns of soil heterogeneity around individual perennial plants. J.Ecol.81, 683–692 (1993).

    Article  Google Scholar 

  • Luis P., Kellner H., Zimdars B., Langer U., Martin F., Buscot F.: Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb.Ecol.50, 570–579 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Newton A.C., Haigh J.M.: Diversity of ectomycorrhizal fungi in Britain: a test of the species-area relationship, and the role of host specificity. New Phytol.138, 619–627 (1998).

    Article  Google Scholar 

  • Řezáčová V., Hršelová H., Gryndlerová H., Mikšík I., Gryndler M.: Modifications of degradation-resistant soil organic matter by soil saprobic microfungi. Soil Biol.Biochem.38, 2292–2299 (2006).

    Article  Google Scholar 

  • Soukupová L., Hršelová H., Gryndlerová H., Merhautová V., Gryndler M.: Alkali-extractable soil organic matter: an important factor affecting the mycelial growth of ectomycorrhizal fungi. Appl.Soil Ecol.40, 37–43 (2008).

    Article  Google Scholar 

  • Taylor A.F.S.: Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil244, 19–28 (2002).

    Article  CAS  Google Scholar 

  • Tedersoo L., Köljalg U., Hallenberg N., Larsson K.-H.: Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol.159, 153–165 (2003).

    Article  CAS  Google Scholar 

  • Tedersoo L., Suvi T., Jairus T., Koöljalg U.: Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ.Microbiol.10, 1189–1201 (2008).

    Article  CAS  PubMed  Google Scholar 

  • White T.J., Bruns T., Lee S., Taylor J.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322 in M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White (Eds): PCR Protocols, a Guide to Methods and Applications. Academic Press, San Diego 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gryndler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gryndler, M., Soukupová, L., Gryndlerová, H. et al. Local distribution of ectomycorrhizae-associated basidiomycetes in forest soil correlates with the degree of soil organic matter humification and available electrolytes. Folia Microbiol 55, 454–460 (2010). https://doi.org/10.1007/s12223-010-0076-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-010-0076-8

Keywords

Navigation