Skip to main content
Log in

Purification and biochemical characterization of thermostable alkaline phosphatases produced by Rhizopus microsporus var. rhizopodiformis

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The biochemical properties of the alkaline phosphatases (AlPs) produced by Rhizopus microsporus are described. High enzymic levels were produced within 1–2 d in agitated cultures with 1 % wheat bran. Intra- and extracellular AlPs were purified 5.0 and 9.3×, respectively, by DEAE-cellulose and ConA-sepharose chromatography. Molar mass of 118 and 120 kDa was estimated by gel filtration for both forms of phosphatases. SDS-PAGE indicated dimeric structures of 57 kDa for both forms. Mn2+, Na+ and Mg2+ stimulated the activity, while Al3+ and Zn2+ activated only the extracellular form. Optimum temperature and pH for both phosphatases were 65 °C and pH 8.0, respectively. The enzymes were stable at 50 °C for at least 15 min. Hydrolysis of 4-nitrophenyl phosphate exhibited a K m 0.28 and 0.22 mmol/L, with υ lim 5.89 and 4.84 U/mg, for intra- and extracellular phosphatases, respectively. The properties of the reported AlPs may be suitable for biotechnological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AcP(s):

acid phosphatase(s)

AlP(s):

alkaline phosphatase(s)

ConA:

concanavalin A

4-NPP:

4-nitrophenyl phosphate

P i :

inorganic phosphate

SbmF:

submerged fermentation

SSF:

solid state fermentation

Tris-HCl:

Tris(hydroxymethyl)aminomethane

UDP-Glc:

uridine 5’-diphosphoglucose

UDP-Glc:

uridine 5’-diphosphoglucose

UDP-GlcNAc:

uridine 5’-diphospho-N-acetylglucosamine

References

  • Adams P.R.: Mycelial amylase activities of thermophilic species of Rhizomucor, Humicola and Papulospora. Mycopathologia112, 35–37 (1990).

    Article  Google Scholar 

  • Blum H., Beier H., Gross H.J.: Improved silver stain of plant protein, RNA and DNA in polyacrylamide gels. Electrophoresis81, 93–99 (1987).

    Article  Google Scholar 

  • Bogo K.R., Masui D.C., Leone F.A., Jorge J.A., Furriel R.P.M.: Structural and kinetic alterations of constitutive conidial alkaline phosphatase from the osmotically-sensitive mutant of Neurospora crassa. Folia Microbiol.51, 431–438 (2006).

    Article  CAS  Google Scholar 

  • Bonet M.L., Llorca F.I., Cadenas E.: Alkaline p-nitrophenyl-phosphate phosphatase activity from Halobacterium halobium. Selective activation by manganese and effect of other divalent cations. Internat.J.Biochem.24, 839–845 (1992a).

    Article  CAS  Google Scholar 

  • Bonet M.L., Llorca F.I., Cadenas E.: Involvement of thiol groups in the reaction mechanism of Mn2+-activated alkaline p-nitrophenylphosphate phosphatase of the extreme halophilic archaebacterium Halobacterium halobium. Biochem.Internat.28, 633–641 (1992b).

    CAS  Google Scholar 

  • Buainain L.B., Kadowaki M.K., Polizeli M.L.T.M., Terenzei H.F., Jorge J.A.: Characterization of a conidial alkaline phospahatse from thermophilic fungus Humicola grisea var. thermoidea. J.Basic Microbiol.38, 85–94 (1998).

    Article  Google Scholar 

  • Caddick M.X., Brownlee A.G., Arst H.N.: Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol.Gen.Genet.203, 346–353 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Cardello L., Terenzi H.F., Jorge J.A.: A cytosolic trehalase from the thermophilic fungus Humicola grisea var. thermoidea. Microbiology140, 1671–1677 (1994).

    Article  Google Scholar 

  • Coleman J.E., Gettins P.: Alkaline phosphatase, solution structure, and mechanism. Adv.Enzymol.Relat.Areas Mol.Biol.55, 381–452 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Coleman J.E., Nakamura K., Chlebowski J.F.: 65Zn(II), 115mCd(II), 60Co(II), and Mg(II) binding to alkaline phosphatase of Escherichia. coli. Structural and functional effects. J.Biol.Chem.258, 386–395 (1983).

    PubMed  CAS  Google Scholar 

  • Davis B.J.: Disc electrophoresis — II. Methods and application to human serum proteins. Ann.N.Y.Acad.Sci.121, 407–427 (1964).

    Article  Google Scholar 

  • Davis R.H.: Neurospora — Contributions of a Model Organism. Oxford University Press, New York 2000.

    Google Scholar 

  • De Araújo P.A., Mies V., Miranda A.: Subcellular distribution of low and high molecular weight acid phosphatases. Biochim.Biophys.Acta52, 121–130 (1976).

    Google Scholar 

  • Dong G., Zeikus G.: Purification and characterization of alkaline phosphatase from Thermotoga neapolitana. Enzyme Microbiol. Technol.21, 335–340 (1997).

    Article  CAS  Google Scholar 

  • Garen A., Siddiqi O.: Supression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc.Nat.Acad.Sci.48, 1121–1126 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Gargova S., Sariyska M., Angelov A., Stoilova I.: Aspergillus niger pH 2.1 optimum acid phosphatase with high affinity for phytate. Folia Microbiol.51, 541–546 (2006).

    Article  CAS  Google Scholar 

  • Guimarães L.H.S., Jorge J.A., Terenzi H.F., Polizeli M.L.T.M.: Thermostable conidial and mycelial alkaline phosphatases from thermophilic fungus Scytalidium thermophilum. J.Ind.Microbiol.Biotechnol.27, 265–270 (2001).

    Article  PubMed  Google Scholar 

  • Guimarães L.H.S., Jorge J.A., Terenzi H.F., Jamus M.C., Oliver C., Polizelli M.L.T.M.: Effect of carbon source on alkaline phosphatase production and excretion in Aspergillus caespitosus. J.Basic Microbiol.43, 210–217 (2003a).

    Article  PubMed  Google Scholar 

  • Guimarães L.H.S., Terenzi H.F., Jorge J.A., Leone F.A., Polizeli M.L.T.M.: Extracellular alkaline phosphatase from the filamentous fungus Aspergillus caespitosus: purification and biochemical characterization. Folia Microbiol.48, 627–632 (2003b).

    Article  Google Scholar 

  • Guimarães L.H.S., Terenzi H.F., Jorge J.A., Leone F.A., Polizeli M.L.T.M.: Characterization and properties of acid phosphatases with phytase activity produced by Aspergillus caespitosus. Biotechnol.Appl.Biochem. 40, 201–207 (2004).

    Article  PubMed  Google Scholar 

  • Guimarães L.H.S., Peixoto-Nogueira S.C., Michelin M., Rizzatti A.C.S., Sandrim V.C., Zanoelo F.F., Aquino A.C.M.M., Barbosa A. Jr., Polizeli M.L.T.M.: Screening of filamentous fungi for production of enzymes of biotechnological interest. Braz.J.Microbiol.37, 474–480 (2006).

    Google Scholar 

  • Guimarães L.H.S., Júnior A.B., Jorge J.A., Terenzi H.F., Polizeli M.L.T.M.: Purification and biochemical characterization of a mycelial alkaline phosphatase without DNAase activity produced by Aspergillus caespitosus. Folia Microbiol.52, 231–236 (2007).

    Article  Google Scholar 

  • Han S.W., Michelin M.A., Barbosa J.E., Rossi A.: Purification and constitutive excretion of acid phosphatase in Neurospora crassa. Phytochemistry35, 131–135 (1994).

    Article  Google Scholar 

  • Heinonen J.K., Lahti R.J.: A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal.Biochem.113, 313–317 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Holander V.P.: Acid phosphatases, pp. 450–498 in Enzymes (P.D. Boyer, Ed.). Academic Press, New York 1971.

    Google Scholar 

  • Huang C.H., Rhee S.G., Cook P.B.: Subunit cooperation and enzymatic catalysis. Ann.Rev.Biochem.51, 935–971 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y.: Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae. Microbiol.Mol.Biol.Rev.70, 440–449(2006).

    Article  PubMed  CAS  Google Scholar 

  • Kuo M.H., Blumenthal H.J.: Absence of phosphatase repression by inorganic phosphate in some micro-organisms. Nature4770, 29–31 (1961).

    Article  Google Scholar 

  • Kuperman R.G., Carreiro M.M.: Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol.Biochem.29, 179–190 (1997).

    Article  CAS  Google Scholar 

  • Laemmli U.K.: Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Leone F.A., Baranauskas J.A., Furriel R.P.M., Borin I.A.: SigrafW: an easy-to-use program for fitting enzyme kinetic data. Biochem.Mol.Biol.Educ.33, 399–403 (2005).

    Article  CAS  Google Scholar 

  • Mccomb R.B., Bowers G.N. Jr., Posen S.: Alkaline Phosphatase. Plenum Press, New York 1979.

    Google Scholar 

  • Mcfeters G.A., Sandine W.E., Becker R.R., Elliken P.R.: Some factors affecting association-dissociation of β-galactosidase from Streptococcus lactis 7962. Can.J.Microbiol.15, 105–110 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Metzenberg R.L.: Enzymically active subunits of Neurospora invertase. Biochim.Biophys.Acta89, 291–302 (1964).

    PubMed  CAS  Google Scholar 

  • Morales A.C., Nozawa S.R., Thedei G. Jr., MACCHERONI W. Jr., ROSSI A.: Properties of a constitutive alkaline phosphatase from strain 74A of mold Neurospora crassa. Braz.J.Med.Biol.Res.33, 905–912 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Nahas E., Rossi A.: Properties of a repressible alkaline phosphatase secreted by the wild-type strain 74A of Neurospora crassa. Phytochemistry23, 507–510 (1984).

    Article  CAS  Google Scholar 

  • O’parrel P.Z., Goodman H.M., O’Farrel P.H.: High resolution two-dimensional electrophoresis of basic as well acidic proteins. Cell12, 1133–1142 (1983).

    Google Scholar 

  • Pereira M., Pereira H. Jr., THEDEI G. Jr., ROSSI A., MARTINEZ-ROSSI N.M.: Purification of Neurospora crassa alkaline phosphatase without DNAse activity for use in molecular biology. World J.Microbiol.Biotechnol.11, 505–507 (1995).

    Article  CAS  Google Scholar 

  • Politino M., Brown J., Usher J.J.: Purification and characterization of an extracellular alkaline phosphatase from Penicillium chrysogenum. Prep.Biochem.Biotechnol.26, 171–181 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Reiter T.A., Reiter N.J., Rusnak F.: Mn2+ is a native metal ion activator for bacteriophage lambda protein phospahatase. Biochemistry41, 15404–15409 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sadoff H.L.: Symposium on bacterial spores — X. Heat resistance of spore enzymes. J.Appl.Bacteriol.33, 130–140 (1970).

    PubMed  CAS  Google Scholar 

  • Sakurai Y., Toda K., Shiota H.: Multiple forms and some properties of alkaline phosphatase produced by Aspergillus oryzae on solid medium. Agric.Biol.Chem.45, 1959–1967 (1981).

    CAS  Google Scholar 

  • Say J.C., Furriel R.P.M., Ciancaglini P., Jorge J.A., Polizeli M.L.T.M., Pizauro J.M., Terenzi H.F., Leone F.A.: Conidial alkaline phosphatase from Neurospora crassa. Phytochemistry41, 71–75 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Tisserant B., Gianinazzi-Pearson V., Gianinazzi S., Gollote A.: In plant histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol.Res.97, 245–250 (1993).

    Article  CAS  Google Scholar 

  • Tuleva B., Vasileva-Tonkova E., Galabova D.: A specific alkaline phosphatase from Saccaharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol.Lett.161, 139–144 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Vincent J.B., Crowder M.W., Averill B.A.: Hydrolysis of phosphate monoester: a biological problem with multiple chemical solutions. TIBS17, 105–110 (1992).

    PubMed  CAS  Google Scholar 

  • Wannet W.J., Wassenaar R.W., Jorissen H.J., Vand Der Drift C., Op Den Camp H.J.: Purification and characterization of an acid phosphatase from the commercial mushroom Agaricus bisporus. Antonie van Leeuwenhoek77, 215–222 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. T. M. Polizeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, A., GuimarÃes, L.H.S., Terenzi, H.F. et al. Purification and biochemical characterization of thermostable alkaline phosphatases produced by Rhizopus microsporus var. rhizopodiformis . Folia Microbiol 53, 509–516 (2008). https://doi.org/10.1007/s12223-008-0080-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0080-4

Keywords

Navigation