Skip to main content
Log in

Tensile Experiment and Numerical Simulation of Carbon Fiber and Polyvinyl Alcohol Fiber Helical Auxetic Yarns

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Based on the negative Poisson’s ratio (NPR) effect obtained from the design of fiber, an auxetic structure of carbon fiber and PVA fiber was designed in this study. Based on the diameter ratio of 1:3, the mechanical behavior and negative Poisson’s ratio (NPR) of fiber helical auxetic yarns (HAYs) with different wrap angles were tested, and the mechanical behavior of fiber HAYs was obtained by digital speckle correlation method (DSCM). It is found that the Poisson’s ratio of HAYs is related to the initial wrap angle, and the maximum value of NPR is −1.35 when the wrap angle is 10°. Based on the test results, the finite element simulation method was used to discuss the mechanical behavior of fiber HAYs with different parameters. The results of the model were basically consistent with the experimental results under the diameter ratio of 1:3, while the maximum value of NPR in the model is −7.03, which appears when the wrap angle is 10° and the diameter ratio is 1:2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the working data have been published in the manuscript, and the data are true and reliable.

References

  1. K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Nature 353, 124 (1991)

    Article  CAS  Google Scholar 

  2. K.L. Alderson, A. Alderson, K.E. Evans, J. Strain. Anal. Eng. 32, 201 (1997)

    Article  Google Scholar 

  3. F. Scarpa, P. Pastorino, A. Garelli, S. Patsias, M. Ruzzene, Physica. Status. Solidi (b) 242, 681 (2005)

    Article  CAS  Google Scholar 

  4. M.H. Sadd, Chapter 6—strain energy and related principles, 3rd edn. (Academic Press, New York, 2014), pp.119–139

    Google Scholar 

  5. T.-C. Lim, Mech. Adv. Mater. Struc. 22, 205 (2014)

    Article  Google Scholar 

  6. G. Imbalzano, P. Tran, T.D. Ngo, P.V.S. Lee, Compos. Struct. 135, 339 (2016)

    Article  Google Scholar 

  7. W.S. Ng, H. Hu, Polymers-Basel. 10, 226 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  8. S.Q. Zhao, Y.P. Chang, Y.D. Yang, M.L.H. Zhang, H. Karmur, H. Hong, Text. Res. J. 91, 1734 (2021)

    Google Scholar 

  9. P.D. Dubrovski, N. Novak, M. Borovinsek, M. Vesenjak, Z.R. Ren, Polymers-Basel. 14, 571 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. X. Ren, R. Das, P. Tran, T.D. Ngo, Y.M. Xie, Smart. Mater. Struct. 27, 023001 (2018)

    Google Scholar 

  11. Y. Kim, K.H. Son, J.W. Lee, Materials. 14, 6821 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. V.A. Lvov, F.S. Senatov, A.A. Veveris, V.A. Skrybykina, A.D. Lantada, Materials 15, 1439 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Chow, K.L. Yick, K.H. Wong, M.S.H. Leung, Y. Sun, M.Y. Kwan, Macromol. Mater. Eng. (2022). https://doi.org/10.1002/mame.202100866

    Article  Google Scholar 

  14. Q. Li, Y. Kuang, M. Zhu, AIP. Adv. 7, 015104 (2017)

    Article  Google Scholar 

  15. K. Chen, Q. Gao, S. Fang, D. Zou, Z. Yang, W.-H. Liao, Appl. Energ. 298, 117274 (2021)

    Article  Google Scholar 

  16. H.Z. Zhang, P. Wen, P. Li, Z. Wang, S.Y. Wang, X. Zhao, Appl. Phys. Lett. 117, 103901 (2020)

    Article  CAS  Google Scholar 

  17. W. Miller, P.B. Hook, C.W. Smith, X. Wang, K.E. Evans, Compos. Sci. Technol. 69, 651 (2009)

    Article  CAS  Google Scholar 

  18. W. Lee, Y. Jeong, J. Yoo, H. Huh, S.-J. Park, S.H. Park, Compos. Struct. 208, 836 (2018)

    Article  Google Scholar 

  19. A. Alderson, K.E. Evans, J. Mater. Sci. 32, 2797 (1997)

    Article  CAS  Google Scholar 

  20. K.W. Wojciechowski, J. Phys A: Gen. Phys. 36, 11765 (2003)

    Article  Google Scholar 

  21. K.L. Alderson, V.R. Simkins, V.L. Coenen, P.J. Davies, A. Alderson, K.E. Evans, Phys. Status. Solidi (b) 242, 509 (2005)

    Article  CAS  Google Scholar 

  22. S. Liu, X. Pan, D. Zheng, G. Liu, Z. Du, J. Ind. Text. 50, 3 (2018)

    Article  Google Scholar 

  23. S. Liu, X. Pan, D. Zheng, Z. Du, G. Liu, S. Yang, Text. Res. J. 89, 1003 (2018)

    Article  Google Scholar 

  24. S. Liu, Y. Gao, X. Chen, Z. Du, Fibers. Polym. 20, 1742 (2019)

    Article  Google Scholar 

  25. J.R. Wright, M.R. Sloan, K.E. Evans, J. Appl. Phys. 108, 127 (2010)

    Article  Google Scholar 

  26. J.R. Wright, M.K. Burns, E. James, M.R. Sloan, K.E. Evans, Text. Res. J. 82, 645 (2012)

    Article  CAS  Google Scholar 

  27. W. Miller, Z. Ren, C.W. Smith, K.E. Evans, Compos. Sci. Technol. 72, 761 (2012)

    Article  CAS  Google Scholar 

  28. M.R. Sloan, J.R. Wright, K.E. Evans, Mech. Mater. 43, 476 (2011)

    Article  Google Scholar 

  29. G. Zhang, O.R. Ghita, C. Lin, K.E. Evans, Text. Res. J. 88, 2590 (2017)

    Article  Google Scholar 

  30. Y. Gao, S. Liu, M. Wu, X. Chen, R. Studd, Phys. Status. Solidi (b) 257, 1900112 (2020)

    Article  CAS  Google Scholar 

  31. S. Bhattacharya, G.H. Zhang, O. Ghita, K.E. Evans, Compos. Sci. Technol. 102, 87 (2014)

    Article  CAS  Google Scholar 

  32. G. Zhang, O.R. Ghita, K.E. Evans, Compos. Part. B-Eng. 99, 494 (2016)

    Article  CAS  Google Scholar 

  33. M.U. Nazir, K. Shaker, R. Hussain, Y. Nawab, Mater. Res. Express. 6, 8 (2019)

    Google Scholar 

  34. S. Liu, Z. Du, K. Xie, G. Liu, S. Yang, Fibers. Polym. 19, 2411 (2018)

    Article  Google Scholar 

  35. Y.J. Gao, X.G. Chen, R. Studd, Text. Res. J. 91, 1290 (2021)

    Article  CAS  Google Scholar 

  36. S. Liu, Z. Du, G. Liu, X. Pan, T. Li, J. Text. I. 112, 1531 (2020)

    Google Scholar 

  37. M. Razbin, M.J. Avanaki, A.A.A. Jeddi, J. Text I. 114, 198–206 (2022). https://doi.org/10.1080/00405000.2022.2026567

    Article  CAS  Google Scholar 

  38. Y.X. Ma, X. Yu, F. Zhao, J. Mater. Sci. (2023). https://doi.org/10.1007/s10853-022-08116-5

    Article  Google Scholar 

  39. J. McAfee, N.H. Faisal, Compos. Struct. 162, 1 (2017)

    Article  Google Scholar 

  40. G.H. Zhang, O. Ghita, K.E. Evans, Compos. Sci. Technol. 117, 257 (2015)

    Article  CAS  Google Scholar 

  41. J.U. Roh, Y.-M. Hwang, J.-S. Roh, G. Nam, Fibers. Polym. 22, 1466 (2021)

    Article  Google Scholar 

  42. D.P. Nicollella, A.E. Nicholls, J. Lankford, D.T. Davy, J. Biomech. 34, 135 (2001)

    Article  Google Scholar 

  43. Y. Shen, M. S. Dissertation, AUBURN, Alabama, 2014

  44. G. Zhang, O. Ghita, C. Lin, K.E. Evans, Compos. Struct. 140, 369 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shandong Provincial Natural Science Foundation (ZR2022ME121), Special Project of Science and Technology Plan in 2020 of Qingdao West Coast New Area, China (2020-38), Open Research Fund of Engineering Research Center of Concrete Technology under Marine Environment, Ministry of Education (TMduracon2022010) and National Natural Science Foundation of China Project (51408330).

Funding

This study was funded by Natural Science Foundation of Shandong Province, ZR2022ME121, Yanxuan Ma, Special Project of Science and Technology Plan in 2020 of Qingdao West Coast New Area, China, 2020-38, Yanxuan Ma, Open Research Fund of Engineering Research Center of Concrete Technology under Marine Environment, Ministry of Education, TMduracon2022010, Yanxuan Ma, Young Scientists Fund, 51408330, Yanxuan Ma.

Author information

Authors and Affiliations

Authors

Contributions

YM contributed to conceptualization, investigation, and writing—review and editing. FZ contributed to data curation, formal analysis, and investigation. JL contributed to data curation. YZ contributed to investigation. YX contributed to methodology and writing—original draft. PZ contributed to investigation. SG contributed to visualization. JZ contributed to formal analysis.

Corresponding author

Correspondence to Yanxuan Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhao, F., Liu, J. et al. Tensile Experiment and Numerical Simulation of Carbon Fiber and Polyvinyl Alcohol Fiber Helical Auxetic Yarns. Fibers Polym 24, 2951–2965 (2023). https://doi.org/10.1007/s12221-023-00256-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00256-y

Keywords

Navigation