Skip to main content
Log in

Mechanical Properties Improvement of Nanoclay Addition Epoxy 3D Orthogonal Woven Composite Material

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the influence of nanoclay on mechanical properties of epoxy/3D orthogonal glass fiber woven composite was studied. The DK2 polymer-grade organic nanoclay modification composite specimen reinforced with 3D orthogonal woven fabric/epoxy was manufactured by means of Resin Infusion under Flexible Tooling (RIFT) process. Firstly, the modification mechanism with nanoclay was characterized by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electron microscope (TEM). Secondly, as far as the tensile behavior between the fiber/matrix of the composite was concerned, the modification process was optimized by means of nonlinear least square fitting. The results show that the bonding strength between the fiber and matrix was improved and the delamination and debonding between fiber and matrix was retarded and shifted to cohesive failure of the matrix due to the nanoclay modification with respect to results from FT-IR, XRD and TEM. The tensile strength and modulus of composite were increased by 23.32 % and 16.42 % respectively due to 3 of nanoclay addition. The contact angle also shows that the dispersion effect and wettability at this state. The tensile stress-strain curve was fitted by applying nonlinear fitting. It can be concluded that there has a good modification effect with 3 wt% of nanoclay addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Stolyarov, T. Quadflieg, and T. Gries, Text. Res. J., 85, 1934 (2015).

    Article  CAS  Google Scholar 

  2. K. Sharp, A. Bogdanovich, R. Boyle, J. Brown, and D. Mungalov, Compos. Part A-Appl. S., 49, 9 (2013).

    Article  Google Scholar 

  3. X. Gao, N. Tao, X. Yang, C. Wang, and F. Xu, Compos. Part B-Eng., 159, 173 (2019).

    Article  CAS  Google Scholar 

  4. X. Wang, H. Cao, and X. Huang, Ind. Text., 36, 7 (2018).

    Google Scholar 

  5. L. Yao, W. Li, N. Wang, W. Li, X. Guo, and Y. Qiu, J. Mater. Sci., 42, 6494 (2007).

    Article  CAS  Google Scholar 

  6. K. Sharp and K. Davies, Reinf. Plast., 58, 52 (2014).

    Article  Google Scholar 

  7. R. Jeyakumar, P. S. Sampath, R. Ramamoorthi, and T. Ramakrishnan, Int. J. Adv. Manuf. Tech., 93, 527 (2017).

    Article  Google Scholar 

  8. H. Wang, X. Wang, and Z. Ding, Thermo. Resin., 33, 55 (2018).

    Google Scholar 

  9. P. Prabhu, S. Mohamed Iqbal, A. Balaji, and B. Karthikeyan, Adv. Compos. Hybrid Mater., 2, 93 (2019).

    Article  Google Scholar 

  10. S. Li, Q. Lin, H. Zhu, C. Cui, H. Hou, T. Lv, and Y. Li, Fiber. Polym., 17, 282 (2016).

    Article  CAS  Google Scholar 

  11. S. Erden, K. Sever, Y. Seki, and M. Sarikanat, Fiber. Polym., 11, 732 (2010).

    Article  CAS  Google Scholar 

  12. M. Faruk, H. Sinin, M. Rezaur, M. Mizanur, F. Kiew, and J. Changhui, Fiber. Polym., 16, 479 (2015).

    Article  CAS  Google Scholar 

  13. Ö. Y. Bozkurt, M. Bulut, A. Erklig, and W. A. Faydh, Compos. Part B-Eng., 158, 82 (2019).

    Article  CAS  Google Scholar 

  14. M. Tomić, B. Dunjić, M. S. Nikolić, J. Maletaškić, V. B. Pavlović, J. Bajat, and J. Djonlagić, Appl. Clay Sci., 154, 52 (2018).

    Article  CAS  Google Scholar 

  15. A. M. Elnaghy and S. E. Elsaka, Odontology, 104, 60 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. N. Tao and X. Gao, Mod. Text. Tech., 27, 15 (2019).

    Google Scholar 

  17. P. Hari Sankar, Y. V. Mohana Reddy, and K. Hemachandra Reddy, Fiber. Polym., 16, 443 (2015).

    Article  CAS  Google Scholar 

  18. R. Gokuldass and R. Ramesh, Silicon, https://doi.org/10.1007/s12633-018-0064-1 (2019).

  19. W. Luo, X. Wang, R. Huang, and P. Fang, Wuhan Univ. J. Nat. Sci., 19, 34 (2014).

    Article  CAS  Google Scholar 

  20. L. Gong, L. Hu, J. Zang, Y. Pei, L. Zhao, and L. Tang, Fiber. Polym., 16, 2056 (2015).

    Article  CAS  Google Scholar 

  21. A. Yasmin, J. L. Abot, and I. M. Daniel, Scripta. Mater., 49, 81 (2003).

    Article  CAS  Google Scholar 

  22. H. Park, P. Shin, J. Kim, Y. Baek, D. Kwon, W. Lee, K. L. DeVries, and J. Park, Fiber. Polym., 19, 1989 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Natural Science Foundation of China (Grant No. 51765051). The Natural Science Foundation of Inner Mongolia under grant No.2017MS0102, and the Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, China (No.FKLTFM1807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Gao, X. & Li, Y. Mechanical Properties Improvement of Nanoclay Addition Epoxy 3D Orthogonal Woven Composite Material. Fibers Polym 20, 1495–1503 (2019). https://doi.org/10.1007/s12221-019-9116-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9116-4

Keywords

Navigation