Skip to main content
Log in

Antimicrobial, Antibiofilm and Cytotoxicity Activity of a New Acridine Hyperbranched Polymer in Solution and on Cotton Fabric

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

For the first time a fluorescent hyperbranched polymer modified with acridine (P1000-Acrid) was tested in vitro for antimicrobial activity against different model pathogens. The results showed strong activity of the compound against the used Gram-positive and Gram negative bacteria and yeasts. Cytotoxicity effect of P1000-Acrid has been studied towards HEp-2 cell line. The antibacterial finishing of cotton fabric treated with the P1000-Acrid was evaluated towards Grampositive and Gram-negative bacteria. It has been shown that the studied P1000-Acrid polymer reduces bacterial growth and prevents the formation of biofilm. The obtained results indicate that the studied P1000-Acrid hyperbranched polymer possess good antimicrobial potential with the greatest effectiveness against the used Gram-positive strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Stewart and J. W. Costerton, Lancet, 358, 135 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. W. Zhang, X. Yang, J. Song, X. Zheng, J. Chen, P. Ma, B. Zhang, and R. Wang, Engineering, 1, 505 (2015).

    Article  Google Scholar 

  3. M. Gensicka-Kowalewska, G. Cholewinski, and K. Dzierzbicka, RSC Adv., 7, 15776 (2017).

    Article  CAS  Google Scholar 

  4. M. Seiler, Chem. Engin. Technol., 25, 237 (2002).

    Article  CAS  Google Scholar 

  5. S. Medel, E. Martínez-Campos, D. Acitores, E. Vassileva-Tonkova, I. Grabchev, and P. Bosch, Eur. Polym. J., 102, 19 (2018).

    Article  CAS  Google Scholar 

  6. Antimicrobial Textiles (Woodhead Publishing Series in Textiles), 1st ed. (Gang Sun Ed.), p.372, Elsevier Ltd., Amsterdam, 2016.

  7. D. S. Morais, R. M. Guedes, and M. A. Lopes, Materials, 9, 498 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  8. D. Staneva, E. Vasileva-Tonkova, M. S. I. I. Makki, T. R. Sobahi, R. M. Abdel-Rahman, I. H. Boyaci, A. M. Asiri, and I. Grabchev, Tetrahedron, 71, 1080 (2015).

    Article  CAS  Google Scholar 

  9. I. Grabchev, S. Yordanova, E. Vasileva-Tonkova, P. Bosch, and S. Stoyanov, Inorg. Chim. Acta, 438, 179 (2015).

    Article  CAS  Google Scholar 

  10. I. Grabchev, D. Staneva, E. Vasileva-Tonkova, R. Alexandrova, M. Cangiotti, A. Fattori, and M. F. Ottaviani, J. Polym. Res., 24, 210 (2017).

    Article  CAS  Google Scholar 

  11. I. Grabchev, E. Vasileva-Tonkova, D. Staneva, P. Bosch, R. Kukeva, and R. Stoyanova, Int. J. Polym. Anal. Charact., 23, 45 (2018).

    Article  CAS  Google Scholar 

  12. D. Staneva, E. Vasileva-Tonkova, P. Bosch, P. Grozdanov, and I. Grabchev, Macromol. Res., 26, 332 (2018).

    Article  CAS  Google Scholar 

  13. I. Grabchev, E. Vasileva-Tonkova, D. Staneva, P. Bosch, R. Kukeva, and R. Stoyanova, New J. Chem., 42, 7853 (2018).

    Article  CAS  Google Scholar 

  14. K. Vaideki, S. Jayakumar, R. Rajendran, and G. Thilagavathi, Appl. Surf. Sci., 254, 2472 (2008).

    Article  CAS  Google Scholar 

  15. M. Rosenberg, FEMS Microbiol. Lett., 22, 289 (1984).

    Article  CAS  Google Scholar 

  16. C. Z. Chen, N. C. Beck-Tan, P. Dhurjati, T. K. van Dyk, R. A. LaRossa, and S. L. Cooper, Biomacromolecules, 1, 473 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. M. Tulu and A. S. Erturk in “A Search for Antibacterial Agents” (V. Bobarala Ed.), pp.89–106, InTech, Rijeka, 2012.

  18. D. M. Morgan, V. L. Larvin, and J. D. Pearson, J. Cell Sci., 94, 553 (1989).

    CAS  PubMed  Google Scholar 

  19. M. Fischer, D. Appelhans, B. Klajnert, M. Bryszewska, B. Voit, and M. Rogers, Biomacromolecules, 11, 1314 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. A. Felczak, N. Wrońska, A. Janaszewska, B. Klajnert, M. Bryszewska, D. Appelhans, B. Voit, S. Różalska, and K. Lisowska, New J. Chem., 36, 2215 (2012).

    Article  CAS  Google Scholar 

  21. K. Winnicka, M. Wroblewska, P. Wieczorek, P. T. Sacha, and E. A. Tryniszewska, Molecules, 18, 8607 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. P. Denyer and J.-Y. Maillard, J. Appl. Microbiol., 92, 35S (2002).

    Article  PubMed  Google Scholar 

  23. M. Vaara and M. Nurminen, Antimicrob. Agents Chemother., 43, 1459 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D. S. Morais, R. M. Guedes, and M. A. Lopes, Materials, 9, 498 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  25. S. Ghosh, S. Yadav, N. Vasanthan, and G. Sekosan, J. Appl. Polym. Sci., 115, 716 (2010).

    Article  CAS  Google Scholar 

  26. S. Akbari, Sci. Bull. Escorena, 7, 11 (2013).

    Google Scholar 

  27. S. S. Sheiko, A. I. Buzin, A. M. Muzafarov, E. A. Rebrov, and E. V. Getmanova, Langmuir, 14, 7468 (1998).

    Article  CAS  Google Scholar 

  28. L. Surdu, M. D. Stelescu, E. Manaila, G. Nicula, O. Iordache, L. C. Dinca, M.-D. Berechet, M. Vamesu, and D. Gurau, Bioinorg. Chem. Appl. (Hindawi Publishing Corporation), 763269 (2014).

  29. Y. H. An and R. J. Friedman, J. Biomed. Mater. Res., 43, 338 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. E. Andreozzi, F. Barbieri, M. F. Ottaviani, L. Giorgi, F. Bruscolini, A. Manti, M. Battistelli, L. Sabatini, and A. Pianetti, Front. Microbiol., 7, 289 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. S. Hong, A. U. Bielinska, A. Mecke, B. Keszler, J. L. Beals, X. Shi, L. Balogh, B. G. Orr, J. R. Baker Jr., and M. M. Banaszak Holl, Bioconjug. Chem., 15, 774 (2004).

    CAS  Google Scholar 

  32. H. B. Agashe, T. Dutta, M. Garg, and N. K. Jain, J. Pharm. Pharmacol., 58, 1491 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. M. K. Calabretta, А. Kumar, A. M. McDermott, and C. Cai, Biomacromolecules, 8, 1807 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. I. Lopez, R. Y. Reins, A. M. McDermott, B. W. Trautner, and C. Cai, Mol. BioSyst., 5, 1148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evgenia Vasileva-Tonkova or Ivo Grabchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasileva-Tonkova, E., Staneva, D., Medel, S. et al. Antimicrobial, Antibiofilm and Cytotoxicity Activity of a New Acridine Hyperbranched Polymer in Solution and on Cotton Fabric. Fibers Polym 20, 19–24 (2019). https://doi.org/10.1007/s12221-019-8687-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8687-4

Keywords

Navigation