Skip to main content
Log in

Experimental Study on Antimicrobial Activity of Silk Fabric Treated with Natural Dye Extract from Neem (Azadirachta indica) Leaves

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present study, a novel eco-friendly production of silk fabrics dyed with different natural dye bath concentrations (40, 80, 120, 160, 200 and 240 g/l) extracted from neem (Azadirachta indica) leaves was developed. The surface morphology of the fabrics was examined by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy to characterize the chemical structure of the fabrics. The SEM images of the undyed fabric show that the fabric was tightly woven with little porosity between the fibres with dozens of silk threads in orthogonal directions. By increasing the neem concentration, a scale of fine particles grew on the surface of the silk fabrics with little macroscopical defects was demonstrated. The fiber diameters and tightness between filaments were significantly increased. The FTIR displayed that, neem dye does not change the characteristic peaks of the silk fabrics. Also, the evaluation of the antimicrobial activity of the undyed and neem dyed silk fabrics was monitored for Gram positive and Gram negative bacteria in addition to yeasts and fungi by using the agar diffusion method. The comparison between the different dye bath concentrations was based on the inhibition zones obtained after incubation. The antimicrobial activity in leaf extract of neem was estimated in Staphylococcus aureus, Bacillus subtilis and Lactobacillus cereus (Gram positive bacteria); Escherichia coli (Gram negative bacteria); Candida albicans and Candida tropicalis (yeasts); and Aspergillus niger and Fusarium solani (fungi). The results emphasized that, the highest neem dye bath concentration (240 g/l) was found to display good inhibitory effect against the Gram positive and reasonable activity against the Gram negative bacteria. Furthermore, the different dye bath concentrations possess no activities against yeast and fungi. In conclusion, the data reveal that the increase of neem dye concentration does not damage the silk fabric; however, it improves its antimicrobial activity by incorporating with antimicrobial agent. The current study highlighted that using neem leaves had beneficial effect in controlling the pathogenic microbial organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Dumitrescu, P. S. Vankar, J. Srivastava, A. M. Mocioiu, and O. Iordache, Industria Textila, 63, 327 (2012).

    CAS  Google Scholar 

  2. D. S. Morais, R. M. Guedes, and M. A. Lopes, Materials, 9, 498 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  3. O. Iordache, A. Cozea, E. Varzaru, E. Stoica, C. Platon, S. Rodino, and I. Dumitrescu, Scientific Bulletin, Series F. Biotechnologies, XX, 362 (2016).

    Google Scholar 

  4. A. Pal, R. Kumar and Y. C. Tripathi, Int. J. Pharm. Pharm. Sci., 8, 387 (2016).

    Article  CAS  Google Scholar 

  5. G. Nieto, Medicines, 4, 63 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  6. M. Kumaresan, P. N. Palanisamy, and P. E. Kumar, Univ. J. Environ. Res. Technol., 2, 280 (2012).

    CAS  Google Scholar 

  7. M. Yusuf, M. Shabbir, and F. Mohammad, Nat. Prod. Bioprospect., 7, 123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. A. Alzohairy, Evidence-Based Complementary and Alternative Medicine, 2016, Article ID 7382506 (2016).

  9. U. Francine, U. Jeannette, and R. J. Pierre, J. Med. Plants Studies, 3, 85 (2015).

    Google Scholar 

  10. N. Wali, S. Dhavan, S. Garg, and S. N. Upadhyay, “Antiinflammatory Effect of Neem Leaf Extract”, Proceedings of World Neem Conference, Bangalore, India, 1993.

    Google Scholar 

  11. A. M. Mujumdar, A. S. Upadhye, and A. M. Pradhan, Ind. J. Pharm. Sci., 60, 363 (1998).

    Google Scholar 

  12. R. R. Raut, A. R. Sawant, and B. B. Jamge, J. Acad. Ind. Res., 3, 327 (2014).

    Google Scholar 

  13. K. G. Bhattacharyya and A. Sarma, Dyes Pigm., 57, 211 (2003).

    Article  CAS  Google Scholar 

  14. Z. S. S. Al-Hashem and M. A. Hossain, Pacific Sci. Rev. A: Nat. Sci. Eng., 18, 128 (2016).

    Google Scholar 

  15. P. Ajaybhan, Navneet, and A. Chauhan, Report and Opinion, 2, 37 (2010).

    Google Scholar 

  16. M. S. Khehra, H. S. Saini, D. K. Sharma, B. S. Chadha, and S. C. Chimni, Dyes Pigm., 70, 1 (2006).

    Article  CAS  Google Scholar 

  17. A. N. Shehata and A. A. Abd El Aty, J. Chem. Pharm. Res., 7, 727 (2015).

    CAS  Google Scholar 

  18. A. S. Abd El-All, S. A. Osman, H. M. F. Roaiah, M. M. Abdalla, A. A. Abd El Aty, and W. H. Abd El-Hady, Med. Chem. Res., 24, 4093 (2015).

    Article  CAS  Google Scholar 

  19. F. H. El-Batal, A. A. El-Kheshen, G. T. El-Bassyouni, and A. A. Abd El Aty, Silicon, 10, 943 (2018).

    Article  CAS  Google Scholar 

  20. K. Yang, R. O. Ritchie, Y. Gu, S. J. Wu, and J. Guan, Mater. Des., 108, 470 (2016).

    Article  CAS  Google Scholar 

  21. T.-S. Kim, J.-R. Cha, and M.-S. Gong, Macromol. Res., 25, 856 (2017).

    Article  CAS  Google Scholar 

  22. Y. Pan, X. Yang, M. Xu, and G. Sun, Mater. Lett., 191, 10 (2017).

    Article  CAS  Google Scholar 

  23. J. Cao and C. Wang, Org. Electron., 55, 26 (2018).

    Article  CAS  Google Scholar 

  24. R. Saraswathi, P. N. Krishnan, and C. Dilip, Asian Pac. J. Trop. Med., 3, 128 (2010).

    Article  Google Scholar 

  25. H. J. Kim and I. C. Um, Int. J. Biol. Macromol., 67, 387 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. M. Boulet-Audet, F. Vollrath, and C. Holland, J. Exper. Biol., 218, 3138 (2015).

    Article  Google Scholar 

  27. J. H. Lee, Y. S. Bae, S. J. Kim, D. W. Song, Y. H. Park, D. G. Bae, J. H. Choi, and I. C. Um, Int. J. Biol. Macromol., 106, 39 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Y. Kawahara, T. Hananoushi, and T. Kimura, Text. Res. J., 73, 289 (2003).

    Article  CAS  Google Scholar 

  29. M. Tsukada, M. R. Khan, T. Tanaka, and H. Morikawa, Text. Res. J., 81, 1541 (2011).

    Article  CAS  Google Scholar 

  30. J. Shao, J. Zheng, J. Liu, and C. M. Carr, J. Appl. Polym. Sci., 96, 1999 (2005).

    Article  CAS  Google Scholar 

  31. A. Bohora, V. Hegde, and S. Kokate, Endodontology, 22, 8 (2010).

    Google Scholar 

  32. R. E. Hafiza, Lancet, 349, 418 (2000).

    Google Scholar 

  33. K. Subramani, V. Murugan, B. K. Shanmugam, S. Rangaraj, M. Palanisamy, R. Venkatachalam, and V. Suresh, J. Alloys Comp., 723, 698 (2017).

    Article  CAS  Google Scholar 

  34. M. H. Patel and P. B. Desai, Res. J. Recent Sci., 3, 24 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osiris W. Guirguis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El Aty, A.A., El-Bassyouni, G.T., Abdel-Zaher, N.A. et al. Experimental Study on Antimicrobial Activity of Silk Fabric Treated with Natural Dye Extract from Neem (Azadirachta indica) Leaves. Fibers Polym 19, 1880–1886 (2018). https://doi.org/10.1007/s12221-018-8239-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8239-3

Keywords

Navigation