Skip to main content
Log in

A Novel Needleless Electrospinning System Using a Moving Conventional Yarn as the Spinneret

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A novel electrospinning system for the mass production of nanofibers using a moving conventional yarn as the spinneret was designed. In the process of electrospinning, a large number of jets were ejected from the surface of the polymer liquid carried by the yarn. The effects of conductivity, surface structure and fineness of the yarn on the morphology and productivity of the obtained nanofibers were discussed in the research. Results indicate that the productivity of nanofibers can be increased up to 1.17 g/h with our method, which is a more than fourfold enhancement compared to less than 0.3 g/h with the method of single-needle electrospinning. Both issues of needle clogging in needle electrospinning and intense solvent evaporation due to the open solution surface in most needleless electrospinning techniques can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Subbiah, G. S. Bhat, R. W. Tock, S. Pararneswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 96, 557 (2005).

    Article  CAS  Google Scholar 

  2. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowsk, and G. L. Bowlin, J. Macromol. Sci. Part A-Pure. Appl. Chem., 38A, 1231 (2001).

    Article  Google Scholar 

  3. A. G. MacDiarmid, W. E. Jones, I. D. Norris, J. Gao, A. T. Johnson, N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, and M. Llaguno, Synth. Met., 119, 27 (2001).

    Article  CAS  Google Scholar 

  4. S. H. Lee, B. C. Ku, X. Wang, L. A. Samuelson, and J. Kumar, Mat. Res. Soc. Symp. Pro., 708, 403 (2002).

    CAS  Google Scholar 

  5. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999).

    Article  CAS  Google Scholar 

  6. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002).

    Article  CAS  Google Scholar 

  7. Y. Márquez, J. Graupera, L. J. del Valle, P. Turon, L. Franco, and J. Puiggalí, Express Polym. Lett., 11, 674 (2017).

    Article  CAS  Google Scholar 

  8. S. V. Lomov and K. Molnár, Express Polym. Lett., 10, 25 (2016).

    Article  Google Scholar 

  9. T. C. Mokhena, N. V. Jacobs, and A. S. Luyt, Express Polym. Lett., 11, 652 (2017).

    Article  CAS  Google Scholar 

  10. J. S. Varabhas, G. G. Chase, and D. H. Reneker, Polymer, 49, 4226 (2008).

    Article  CAS  Google Scholar 

  11. A. K. Higham, C. Tang, A. M. Landry, M. C. Pridgeon, E. M. Lee, A. L. Andrady, and S. A. Khan, AICHE J., 60, 1355 (2014).

    Article  CAS  Google Scholar 

  12. H. T. Niu and T. Lin, J. Nanomater., 2012, 725950 (2012).

    Google Scholar 

  13. S. Xie and Y. C. Zeng, Ind. Eng. Chem. Res., 51, 5346 (2012).

    Article  CAS  Google Scholar 

  14. A. Kumar, M. Wei, C. Barry, J. Chen, and J. Mead, Macromol. Mater. Eng., 295, 701 (2010).

    Article  CAS  Google Scholar 

  15. A. Vaseashta, Appl. Phys. Lett., 90, 093115 (2007).

    Article  CAS  Google Scholar 

  16. N. M. Thoppey, J. R. Bochinski, L. I. Clarke, and R. E. Gorga, Nanotechnology, 22, 345301 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. K. M. Forward and G. C. Rutledge, Chem. Eng. J., 183, 492 (2012).

    Article  CAS  Google Scholar 

  18. G. J. Jiang, S. Zhang, and X. H. Qin, Mater. Lett., 106, 56 (2013).

    Article  CAS  Google Scholar 

  19. X. Wang, X. W. Hu, X. C. Qiu, X. Y. Huang, D. Z. Wu, and D. H. Sun, Mater. Lett., 99, 21 (2013).

    Article  CAS  Google Scholar 

  20. S. L. Liu, Y. Y. Huang, H. D. Zhang, B. Sun, J. C. Zhang, and Y. Z. Long, Mater. Res. Innov., 18, 833 (2014).

    Google Scholar 

  21. Z. Liu, R. X. Chen, and J. H. He, Mater. Des., 94, 496 (2016).

    Article  CAS  Google Scholar 

  22. K. Molnar and Z. K. Nagy, Eur. Polym. J., 74, 279 (2016).

    Article  CAS  Google Scholar 

  23. P. Pokorny, E. Kostakova, F. Sanetrnik, P. Mikes, J. Chvojka, T. Kalous, M. Bilek, K. Pejchar, J. Valtera, and D. Lukas, Phys. Chem. Chem. Phys., 16, 26816 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. A. Balogh, R. Cselkó, B. Démuth, G. Verreck, J. Mensch, G. Marosi, and Z. K. Nagy, Int. J. Pharm., 495, 75 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. A. Balogh, B. Farkas, A. Domokos, A. Farkas, B. Démuth, E. Borbás, B. Nagy, G. Marosi, and Z. K. Nagy, Eur. Polym. J., 95, 406 (2017).

    Article  CAS  Google Scholar 

  26. O. Jirsák, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, and J. Chaloupek, U. S. Patent, W02005024101 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Kun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, HJ., Liu, CK. & Molnar, K. A Novel Needleless Electrospinning System Using a Moving Conventional Yarn as the Spinneret. Fibers Polym 19, 1472–1478 (2018). https://doi.org/10.1007/s12221-018-8183-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8183-2

Keywords

Navigation