Skip to main content
Log in

Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, octadecylamine-functionalized graphene oxide (GO-ODA)/epoxy nanocomposites were fabricated via vacuum shock technique and effect of GO functionalization on thermal and mechanical properties of the nanocomposites was examined. In this case, for characterization of functionalization of GO nanosheets, Fourier transform infrared spectroscopy (FTIR) and Raman analysis were used. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses indicate uniform dispersion of nanoparticles throughout the matrix. Despite this, the results of SEM analysis confirmed the significant effect of the vacuum shock technique on bubbles reduction, which affected thermal and mechanical properties of composites. Thermogravimetric analysis (TGA) showed the increase in onset degradation temperature and better thermal stability for the GO-ODA/epoxy nanocomposites in comparison to GO/epoxy nanocomposite and neat epoxy. The maximum thermal degradation temperature for epoxy resin was increased from 356 oC to 365 °C. Besides, the addition of 0.5 wt% GO-ODA within the matrix increased the tensile and flexural strength of epoxy resins by 104 % and 75 %, respectively, due to the well dispersion and strong interfacial interactions between GO-ODA and epoxy resin through covalent functionalization. The toughening effect of GO-ODA was explored in epoxy nanocomposites and found to be significant (~251 %) in improving the impact strength of specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Mousavi, S. A. Hashemi, S. Jahandideh, S. Baseri, M. Zarei, and S. Azadi, Polymers from Renewable Resources, 8, 117 (2017).

    Google Scholar 

  2. H. Deveci, Polym. Compos., 34, 1375 (2013).

    Article  CAS  Google Scholar 

  3. H. Ribeiro, M. W. da Silva, J. C. Neves, H. D. R. Calado, R. Paniago, L. M. Seara, D. das Mercês Camarano, and G. G. Silva, Polym. Test., 43, 182 (2015).

    Article  CAS  Google Scholar 

  4. B. Qi, Z. Yuan, S. Lu, K. Liu, S. Li, L. Yang, and J. Yu, Fiber. Polym., 15, 326 (2014).

    Article  CAS  Google Scholar 

  5. K. Yu, M. Wang, K. Qian, X. Lu, and J. Sun, Fiber. Polym., 17, 453 (2016).

    Article  CAS  Google Scholar 

  6. W. S. Kang, K. Y. Rhee, and S. J. Park, Compos. Pt. BEng., 114, 175 (2017).

    Article  CAS  Google Scholar 

  7. S. Chhetri, P. Samanta, N. C. Murmu, S. K. Srivastava, and T. Kuila, Polym. Eng. Sci., 56, 1221 (2016).

    Article  CAS  Google Scholar 

  8. Z. Yu, H. Di, Y. Ma, Y. He, L. Liang, L. Lv, X. Ran, Y. Pan, and Z. Luo, Surf. Coat. Technol., 276, 471 (2015).

    Article  CAS  Google Scholar 

  9. L. Li, Z. Zeng, H. Zou, and M. Liang, Thermochim Acta, 614, 76 (2015).

    Article  CAS  Google Scholar 

  10. S. Suresh Kumar and K. Subramanian, Adv. Polym. Tech., 35, 21702 (2016).

    Google Scholar 

  11. K. Nawaz, M. Ayub, N. Ul-Haq, M. Khan, M. B. K. Niazi, and A. Hussain, Fiber. Polym., 15, 2040 (2014).

    Article  CAS  Google Scholar 

  12. K. Tschoppe, F. Beckert, M. Beckert, and R. Mülhaupt, Macromol. Mater. Eng., 300, 140 (2015).

    Article  CAS  Google Scholar 

  13. H. Hu, Y. He, Z. Long, and Y. Zhan, Polym. Adv. Technol., 28, 6 (2017).

    Google Scholar 

  14. E. Aram, M. Ehsani, H. A. Khonakdar, S. H. Jafari, and N. R. Nouri, Fiber. Polym., 17, 174 (2016).

    Article  CAS  Google Scholar 

  15. X. Wang, W. Xing, P. Zhang, L. Song, H. Yang, and Y. Hu, Compos. Sci. Technol., 72, 737 (2012).

    Article  CAS  Google Scholar 

  16. L. C. Tang, Y. J. Wan, D. Yan, Y. B. Pei, L. Zhao, Y. B. Li, L. B. Wu, J. X. Jiang, and G. Q. Lai, Carbon, 60, 16 (2013).

    Article  CAS  Google Scholar 

  17. Y. J. Wan, L. X. Gong, L. C. Tang, L. B. Wu, and J. X. Jiang, Compos. Pt. A-Appl. Sci. Manuf., 64, 79 (2014).

    Article  CAS  Google Scholar 

  18. Z. Li, R. J. Young, R. Wang, F. Yang, L. Hao, W. Jiao, and W. Liu, Polymer, 54, 5821 (2013).

    Article  CAS  Google Scholar 

  19. C. Y. Lee, J. H. Bae, T. Y. Kim, S. H. Chang, and S. Y. Kim, Compos. Pt. A-Appl. Sci. Manuf., 75, 11 (2015).

    Article  CAS  Google Scholar 

  20. S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, Appl. Surf. Sci., 421, 778 (2017).

    Article  Google Scholar 

  21. X. J. Shen, X. Q. Pei, S. Y. Fu, and K. Friedrich, Polymer, 54, 1234 (2013).

    Article  CAS  Google Scholar 

  22. C. C. Teng, C. C. M. Ma, C. H. Lu, S. Y. Yang, S. H. Lee, M. C. Hsiao, M. Y. Yen, K. C. Chiou, and T. M. Lee, Carbon, 49, 5107 (2011).

    Article  CAS  Google Scholar 

  23. B. Yuan, Y. Hu, X. Chen, Y. Shi, Y. Niu, Y. Zhang, S. He, and H. Dai, Compos. Pt. A-Appl. Sci. Manuf., 100, 106 (2017).

    Article  CAS  Google Scholar 

  24. T. Jiang, T. Kuila, N. H. Kim, B. C. Ku, and J. H. Lee, Compos. Sci. Technol., 79, 115 (2013).

    Article  CAS  Google Scholar 

  25. H. Huang and R. Talreja, Compos. Sci. Technol., 65, 1964 (2005).

    Article  CAS  Google Scholar 

  26. S. A. Hashemi and S. M. Mousavi, Compos. Pt. A-Appl. Sci. Manuf., 90, 457 (2016).

    Article  CAS  Google Scholar 

  27. T. Alomayri, Ceram. Int., 43, 5 (2017).

    Article  Google Scholar 

  28. W. S. Hummers Jr and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  29. W. Li, X. Z. Tang, H. B. Zhang, Z. G. Jiang, Z. Z. Yu, X. S. Du, and Y. W. Mai, Carbon, 49, 4724 (2011).

    Article  CAS  Google Scholar 

  30. Z. Lin, Y. Liu, and C. P. Wong, Langmuir, 26, 16110 (2010).

    Article  CAS  Google Scholar 

  31. H. Pang, Y. Y. Piao, C. H. Cui, Y. Bao, J. Lei, G. P. Yuan, and C. L. Zhang, J. Polym. Res., 20, 304 (2013).

    Article  Google Scholar 

  32. S. Chatterjee, J. Wang, W. Kuo, N. Tai, C. Salzmann, W. Li, R. Hollertz, F. Nüesch, and B. Chu, Chem. Phys. Lett., 531, 6 (2012).

    Article  CAS  Google Scholar 

  33. Z. Li, R. J. Young, R. Wang, F. Yang, L. Hao, W. Jiao, and W. Liu, Polymer, 54, 5821 (2013).

    Article  CAS  Google Scholar 

  34. Y. Wang, J. Yu, W. Dai, Y. Song, D. Wang, L. Zeng, and N. Jiang, Polym. Compos., 36, 3 (2015).

    Google Scholar 

  35. C. L. Chiang and S. W. Hsu, Polym. Int., 59, 119 (2010).

    Article  CAS  Google Scholar 

  36. Y. J. Wan, L. C. Tang, L. X. Gong, D. Yan, Y. B. Li, L. B. Wu, J. X. Jiang, and G. Q. Lai, Carbon, 69, 467 (2014).

    Article  CAS  Google Scholar 

  37. M. K. Shin, B. Lee, S. H. Kim, J. A. Lee, G. M. Spinks, S. Gambhir, G. G. Wallace, M. E. Kozlov, R. H. Baughman, and S. J. Kim, Nat. Commun., 3, 650 (2012).

    Article  Google Scholar 

  38. M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu, and Y. Yang, J. Mater. Chem., 20, 9635 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Sarraf Shirazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahandideh, S., Shirazi, M.J.S. & Tavakoli, M. Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites. Fibers Polym 18, 1995–2004 (2017). https://doi.org/10.1007/s12221-017-7417-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7417-z

Keywords

Navigation