Skip to main content
Log in

Estimation of pore size and porosity of modified polyester/PVA blended spun yarn

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The performance of a textile material depends on the arrangement of its constituent fibres. For good mechanical behaviour strong inter fibre cohesion is necessary. In order to impart comfort characteristics, a permeable structure is desired. Staple fibre, by virtue of its limited length and other constraints, cannot produce fully compacted structure. For an optimum performance, a balance between the permeable and cohesive characteristics is necessary. An estimation of the openness of the structure may help in designing product for specific requirement. The degree of openness, however, may be varied through necessary modifications during and post manufacturing stage. In the present study empirical relations have been developed to calculate the equivalent pore diameter and porosity for three different modes of packing in yarns. Theoretical calculation was done for all three possible modes of packing while the experimental evaluations were made using the cross sectional images. The change in pore size and porosity were also estimated for a polyester/PVA blended yarn on removal of PVA component. A comparison of experimentally measured porosity was made with the results obtained theoretically. Hexagonal close packing resulted lowest porosity and experimentally measured values were in close association with the theoretically measured porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Neckar and D. Das, “Theory of Structure and Mechanics of Fibrous Assemblies”, p.30, Woodhead Publishing India Limited, New Delhi, 2012.

    Book  Google Scholar 

  2. P. Anne, M. Pascal, and C. Claude, Text. Res. J., 70, 333 (2000).

    Article  Google Scholar 

  3. H. Ito and Y. Muraoka, Text. Res. J., 63, 414 (1993).

    Article  CAS  Google Scholar 

  4. A. Das, V. K. Kothari, and M. Balaji, J. Text. Inst., 98, 261 (2006).

    Article  Google Scholar 

  5. A. Das, V. K. Kothari, and M. Balaji, J. Text. Inst., 98, 363 (2006).

    Article  Google Scholar 

  6. A. G. Ogston, T. Faraday Soc., 54, 1754 (1958).

    Article  Google Scholar 

  7. T. Komori and K. Makishima, Text. Res. J., 49, 550 (1979).

    Article  Google Scholar 

  8. H. N. Yoon and A. Buckey, Text. Res. J., 54, 289 (1984).

    Article  CAS  Google Scholar 

  9. A. Das and S. M. Ishtiaque, J. Text. Appl., Tech. Mgt., 3, 1 (2004).

    Google Scholar 

  10. T. R. Ogulata and S. Mezarcioz, J. Text. Inst., 103, 654 (2012).

    Article  CAS  Google Scholar 

  11. P. D. Dubrovski, Text. Res. J., 70, 915 (2000).

    Article  Google Scholar 

  12. P. D. Dubrovski, J. Text. Inst., 92, 288 (2001).

    Article  Google Scholar 

  13. A. Das, S. M. Ishtiaque, and R. P. Singh, J. Text. Inst., 100, 207 (2009).

    Article  Google Scholar 

  14. E. R. Schwarz, Text. Res. J., 21, 125 (1951).

    Article  Google Scholar 

  15. B. K. Iyer and R. M. Phatarford, J. Text. Inst., 56, T225 (1965).

    Article  Google Scholar 

  16. D. Petrulis, Mat. Sci. (Medžiagotyra), 9, 116 (2003).

    Google Scholar 

  17. D. Petrulis and S. Petrulyte, Mat. Sci. (Medžiagotyra), 8, 202 (2002).

    Google Scholar 

  18. D. Petrulis and S. Petrulyte, Fibres Text. East. Eur., 1, 40 (2003).

    Google Scholar 

  19. D. Petrulis and S. Petrulyte, Mat. Sci. (Medžiagotyra), 9, 419 (2003).

    Google Scholar 

  20. S. M. Ishtiaque, A. Das, and R. P. Singh, J. Text. Inst., 99, 147 (2008).

    Article  CAS  Google Scholar 

  21. J. W. S. Hearle, P. Grosberg, and S. Becker, “Structural Mechanics of Fibres, Yarns and Fabrics”, p.80, Wiley Interscience, USA, New York, 1969.

    Google Scholar 

  22. X. Y. Jiang, J. L. Hu, and K. P. S. Cheng, Text. Res. J., 75, 233 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Sinha, S.K. & Ghosh, S. Estimation of pore size and porosity of modified polyester/PVA blended spun yarn. Fibers Polym 17, 1489–1496 (2016). https://doi.org/10.1007/s12221-016-5955-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5955-4

Keywords

Navigation