Skip to main content
Log in

Analysis of fingertip/textile friction-induced vibration by time-frequency method

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Tactile textures of textiles depend on the non-linear friction vibrations which are generated by the fingertip sliding across textile surfaces. It is relatively difficult to understand these complex vibrations, since skin and textile are viscoelastic and their vibration spectra are too redundant. Currently, the method of handling such complex vibrations in the field of tactile evaluation and tactile rendering usually adopts Fourier analysis. Unfortunately, only Fourier analysis can neither trace the multi-scales surface textures nor delete the redundant information. This paper proposed a time-frequency analysis, which extends the recorded 1-D vibration signals to 2-D time-frequency spaces to realize the multi-scales decomposition and dimension reduction. By applying this method to four typical kinds of texture surfaces, such as grille and textiles, the results demonstrated that the time-frequency analysis can accurately capture the major textural features from friction-induced vibration signals and decrease the dimensionality of complex signals. Considering the merits of dimension reduction, the time-frequency analysis could use in the texture synthetic of tactile virtual rendering and the tactile design of textile products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Weber, H. P. Saal, J. D. Lieber, J.-W. Cheng, L. R. Manfredi, J. F. Dammann, and S. J. Bensmaia, Proc. Natl. Acad. Sci. USA, 110, 17107 (2013).

    Article  CAS  Google Scholar 

  2. J. Hu, X. Zhang, X. Yang, R. Jiang, X. Ding, and R. Wang, J. Text. Inst., 106, 1 (2015).

    Article  Google Scholar 

  3. M. Hollins, S. J. Bensmaia, and S. Washburn, Somatosens. Mot. Res., 18, 253 (2001).

    Article  CAS  Google Scholar 

  4. K. O. Johnson, Curr. Opin. Neurobiol., 11, 455 (2001).

    Article  CAS  Google Scholar 

  5. T. Maeno, K. Kobayashi, and N. Yamazaki, JSME Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf., 41, 94 (1998).

    Article  Google Scholar 

  6. S. Bensmaia, M. Hollins, and J. Yau, Percept. Psychophys., 67, 828 (2005).

    Article  Google Scholar 

  7. S. J. Bensmaïa and M. Hollins, Percept. Psychophys., 67, 842 (2005).

    Article  Google Scholar 

  8. M. Hollins and S. J. Bensmaiea, Can. J. Exp. Psychol., 61, 184 (2007).

    Article  Google Scholar 

  9. W. M. Bergmann Tiest, Vision Res., 50, 2775 (2010).

    Article  Google Scholar 

  10. L. R. Manfredi, H. P. Saal, K. J. Brown, M. C. Zielinski, J. F. Dammann, V. S. Polashock, and S. J. Bensmaia, J. Neurophysiol., 111, 1792 (2014).

    Article  Google Scholar 

  11. M. Germani, M. Mengoni, and M. Peruzzini, Int. J. Adv. Manuf. Technol., 68, 2185 (2013).

    Article  Google Scholar 

  12. M. Wiertlewski, J. Lozada, and V. Hayward, IEEE Trans. Robot., 27, 461 (2011).

    Article  Google Scholar 

  13. S. J. Bensmaïa and M. Hollins, Somatosens. Mot. Res., 20, 33 (2003).

    Article  Google Scholar 

  14. R. Fagiani, F. Massi, E. Chatelet, Y. Berthier, and A. Akay, Tribol. Int., 44, 1100 (2011).

    Article  Google Scholar 

  15. R. Fagiani, F. Massi, E. Chatelet, Y. Berthier, and A. Sestieri, Proc. Inst. Mech. Eng. Pt. J.-J. Eng. Tribol., 224, 1027 (2010).

    Article  Google Scholar 

  16. R. Fagiani, F. Massi, E. Chatelet, J. P. Costes, and Y. Berthier, Tribol. Lett., 48, 145 (2012).

    Article  Google Scholar 

  17. Y. Hu, J. Hu, Q. Zhao, X. Ding, and X. Yang, Fiber. Polym., 14, 1024 (2013).

    Article  Google Scholar 

  18. S. Okamoto, S. Ishikawa, H. Nagano, and Y. Yamada, Virtual Real., 17, 181 (2013).

    Article  Google Scholar 

  19. Y. Matsuura, S. Okamoto, H. Nagano, and Y. Yamada, Inf. Media Technol., 9, 505 (2014).

    Google Scholar 

  20. T. Callier, H. P. Saal, E. C. Davis-Berg, and S. J. Bensmaia, J. Neurophysiol., 113, 3013 (2015).

    Article  Google Scholar 

  21. T. Yoshioka, B. Gibb, A. K. Dorsch, S. S. Hsiao, and K. O. Johnson, J. Neurosci., 21, 6905 (2001).

    CAS  Google Scholar 

  22. D. T. Blake, S. S. Hsiao, and K. O. Johnson, J. Neurosci., 17, 7480 (1997).

    CAS  Google Scholar 

  23. S. G. Mallat, Trans. Am. Math. Soc., 315, 69 (1989).

    Google Scholar 

  24. N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. A-Math. Phys. Eng. Sci., 454, 903 (1998).

    Article  Google Scholar 

  25. B. P. Marchant, Biosyst. Eng., 85, 261 (2003).

    Article  Google Scholar 

  26. S. Bensaid, J. F. Osselin, L. Schacher, and D. Adolphe, J. Text. Inst., 97, 137 (2006).

    Article  Google Scholar 

  27. M. Kergoat, A. Giboreau, H. Nicod, P. Faye, E. Diaz, M.-A. Beetschen, and T. Meyer, J. Sens. Stud., 27, 232 (2012).

    Article  Google Scholar 

  28. S. Okamoto, H. Nagano, and Y. Yamada, IEEE Trans. Haptics, 6, 81 (2013).

    Article  Google Scholar 

  29. M. J. Adams, B. J. Briscoe, and S. A. Johnson, Tribol. Lett., 26, 239 (2007).

    Article  CAS  Google Scholar 

  30. J. R. Phillips, R. S. Johansson, and K. O. Johnson, J. Neurosci., 12, 827 (1992).

    CAS  Google Scholar 

  31. T. Yoshioka, S. Bensmaia, J. C. Craig, and S. Hsiao, Somatosens. Mot. Res., 24, 53 (2007).

    Article  CAS  Google Scholar 

  32. L. C. Gerhardt, A. Lenz, N. D. Spencer, T. Münzer, and S. Derler, Skin Res. Technol., 15, 288 (2009).

    Article  Google Scholar 

  33. N. Gitis and R. Sivamani, Tribol. Trans., 47, 461 (2004).

    Article  CAS  Google Scholar 

  34. E. Heide, X. Zeng, and M. A. Masen, Friction, 1, 130 (2013).

    Article  Google Scholar 

  35. J. L. Gennisson, T. Baldeweck, M. Tanter, S. Catheline, M. Fink, L. Sandrin, C. Cornillon, and B. Querleux, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51, 980 (2004).

    Article  Google Scholar 

  36. D. Aliouche and P. Viallter, Text. Res. J., 70, 939 (2000).

    Article  CAS  Google Scholar 

  37. O. Ben-David, S. M. Rubinstein, and J. Fineberg, Nature, 463, 76 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, R., Hu, J., Yang, X. et al. Analysis of fingertip/textile friction-induced vibration by time-frequency method. Fibers Polym 17, 630–636 (2016). https://doi.org/10.1007/s12221-016-5913-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5913-1

Keywords

Navigation