Skip to main content
Log in

Effect of microcrystalline cellulose on biodegradability, tensile and morphological properties of montmorillonite reinforced polylactic acid nanocomposites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the effects of incorporating microcrystalline cellulose (MCC) on montmorillonite (MMT) reinforced polylactic acid (PLA) nanocomposites prepared by solution casting method. The biodegradability, tensile and morphological properties of PLA hybrid composites were investigated using soil burial test, tensile testing machine, field emission scanning electron microscopy, transmission electron microscopy (TEM) and optical microscopy. In addition, Fourier transform infrared spectroscopy (FTIR) was used to observe the interactions between fillers and PLA in the hybrid composites. Various amounts of MCC were added to the optimum formulation which was 5 phr of MMT to produce PLA/MMT/MCC hybrid composites. The biodegradability of hybrid composites increased compared to nanocomposite with 5 phr MMT content and neat PLA. Interestingly, the ductility of PLA/MMT/MCC hybrid composites increased significantly with the addition of 1 phr MCC filler. FTIR analysis revealed some interactions between PLA and both fillers in the hybrid composites. X-ray diffraction and TEM analyses revealed that incorporation of MCC filler into optimum formulation of PLA/MMT nanocomposites slightly decreased the interlayer spacing of MMT in the PLA/MMT/ MCC hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. U. Nam, K. D. Min, and Y. Son, Mater. Lett., 150, 118 (2015).

    Article  CAS  Google Scholar 

  2. E. Robles, I. Urruzola, J. Labidi, and L. Serrano, Ind. Crop. Prod., 71, 44 (2015).

    Article  CAS  Google Scholar 

  3. M. D. Sanchez-Garcia and J. M. Lagaron, Cellulose, 17, 987 (2010).

    Article  CAS  Google Scholar 

  4. S. Y. Cho, H. H. Park, Y. S. Yun, and H. J. Jin, Fiber. Polym., 14, 1001 (2013).

    Article  CAS  Google Scholar 

  5. M. R. Kaiser, H. B. Anuar, N. B. Samat, and S. B. A. Razak, Iran. Polym. J., 22, 123 (2013).

    Article  CAS  Google Scholar 

  6. R. T. De Silva, P. Pasbakhsh, K. L. Goh, S. P. Chai, and J. J. Chen, Compos. Mater., 48, 3705 (2013).

    Article  Google Scholar 

  7. L. Petersson and K. Oksman, Compos. Sci. Technol., 66, 2187 (2006).

    Article  CAS  Google Scholar 

  8. H. Luo, G. Xiong, Q. Li, C. Ma, Y. Zhu, R. Guo, and Y. Wan, Fiber. Polym., 15, 2591 (2014).

    Article  CAS  Google Scholar 

  9. L. Petersson, I. Kvien, and K. Oksman, Compos. Sci. Technol., 67, 2535 (2007).

    Article  CAS  Google Scholar 

  10. K. Oksman, A. P. Mathew, D. Bondeson, and I. Kvien, Compos. Sci. Technol., 66, 2776 (2006).

    Article  CAS  Google Scholar 

  11. M. J. Pluta, J. Polym. Sci. Pt. B-Polym. Phys., 44, 3392 (2006).

    Article  CAS  Google Scholar 

  12. J. H. Lee and Y. G. Jeong, Fiber. Polym., 12, 180 (2011).

    Article  CAS  Google Scholar 

  13. H. Ferfera-Harrar and N. Dairi, Iran. Polym. J., 23, 917 (2014).

    Article  CAS  Google Scholar 

  14. S. A. Attaran, A. Hassan, and M. U. Wahit, Iran. Polym. J., 24, 367 (2015).

    Article  CAS  Google Scholar 

  15. S. Sinha Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003).

    Article  Google Scholar 

  16. Q. H. Zeng, A. B. Yu, G. Q. Lu, and D. R. J. Paul, Nanosci. Nanotechnol., 5, 1574 (2005).

    Article  CAS  Google Scholar 

  17. L. Jiang, J. Zhang, and M. P. Wolcott, Polymer, 48, 7632 (2007).

    Article  CAS  Google Scholar 

  18. J. H. Chang, Y. U. An, and G. S. J. Sur, J. Polym. Sci. Pt. BPolym. Phys., 41, 94 (2003).

    Article  CAS  Google Scholar 

  19. R. Arjmandi, A. Hassan, S. J. Eichhorn, M. K. M. Haafiz, Z. Zakaria, and F. A. Tanjung, J. Matar. Sci., 50, 3118 (2015).

    CAS  Google Scholar 

  20. M. Shayan, H. Azizi, I. Ghasemi, and M. Karrabi, Carbohydr. Polym., 124, 237 (2015).

    Article  CAS  Google Scholar 

  21. N. Herrera, A. P. Mathew, and K. Oksman, Compos. Sci. Technol., 106, 149 (2015).

    Article  CAS  Google Scholar 

  22. X. Wang, P. Qu, and L. Zhang, Fiber. Polym., 15, 302 (2014).

    Article  CAS  Google Scholar 

  23. V. S. Karande, A. K. Bharimalla, N. Vigneshwaran, P. G. Kadam, and S. T. Mhaske, Iran. Polym. J., 23, 869 (2014).

    Article  CAS  Google Scholar 

  24. P. Satyamurthy, P. Jain, R. H. Balasubramanya, and N. Vigneshwaran, Carbohydr. Polym., 83, 122 (2011).

    Article  CAS  Google Scholar 

  25. W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, and Y. Hai, Carbohydr. Polym., 83, 1804 (2011).

    Article  CAS  Google Scholar 

  26. A. Iwatake, M. Nogi, and H. Yano, Compos. Sci. Technol., 68, 2103 (2008).

    Article  CAS  Google Scholar 

  27. J. Lu, T. Wang, and L. T. Drzal, Compos. Pt. A-Appl. Sci. Manuf., 39, 738 (2008).

    Article  Google Scholar 

  28. A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci., 97, 2014 (2005).

    Article  CAS  Google Scholar 

  29. M. K. M. Haafiz, A. Hassan, Z. Zakaria, I. M. Inuwaa, M. S. Islam, and M. Jawaid, Carbohydr. Polym., 98, 139 (2013).

    Article  CAS  Google Scholar 

  30. S. Chuayjuljit, S. Su-uthai, and S. Charuchinda, Waste. Manag. Res., 28, 109 (2010).

    Article  CAS  Google Scholar 

  31. S. Chuayjuljit, S. Hosililak, and A. Athisart, J. Metal. Mater. Mineral., 19, 59 (2009).

    CAS  Google Scholar 

  32. J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El- Wakil, and A. Dufresne, Ind. Crop. Prod., 32, 627 (2010).

    Article  CAS  Google Scholar 

  33. R. Arjmandi, A. Hassan, M. K. M. Haafiz, and Z. Zakaria, Int. J. Biol. Macromol., 81, 91 (2015).

    Article  CAS  Google Scholar 

  34. N. L. Chen, H. X. Feng, J. W. Guo, H. M. Luo, and J. H. Qiu, Adv. Mat. Res., 221, 211 (2011).

    Article  CAS  Google Scholar 

  35. M. Liu, Y. Zhang, and C. Zhou, Appl. Clay Sci., 75–76, 52 (2013).

    Article  Google Scholar 

  36. P. Qu, Y. Gao, G. Wu, and L. Zhang, Bioresources, 5, 1811 (2010).

    CAS  Google Scholar 

  37. J. H. Chang, Y. U. An, D. Cho, and E. P. Giannelis, Polymer, 44, 3715 (2003).

    Article  CAS  Google Scholar 

  38. K. C. Cheng, C. B. Yu, W. Guo, S. F. Wang, T. H. Chuang, and Y. H. Lin, Carbohydr. Polym., 87, 1119 (2012).

    Article  CAS  Google Scholar 

  39. V. P. Cyras, L. B. Manfredi, M. T. Ton-That, and A. Vázquez, Carbohydr. Polym., 73, 55 (2008).

    Article  CAS  Google Scholar 

  40. A. Ranade, K. Nayak, D. Fairbrother, and N. A. D’Souza, Polymer, 46, 7323 (2005).

    Article  CAS  Google Scholar 

  41. C. W. Shyang and L. S. Kuen, Polym. Polym. Compos., 16, 263 (2008).

    CAS  Google Scholar 

  42. H. Balakrishnan, A. Hassan, M. U. Wahit, A. A. Yussuf, and S. B. A. Razak, Mater. Des., 31, 3289 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azman Hassan or M. K. Mohamad Haafiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmandi, R., Hassan, A., Haafiz, M.K.M. et al. Effect of microcrystalline cellulose on biodegradability, tensile and morphological properties of montmorillonite reinforced polylactic acid nanocomposites. Fibers Polym 16, 2284–2293 (2015). https://doi.org/10.1007/s12221-015-5507-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5507-3

Keywords

Navigation