Skip to main content
Log in

Formation of Ag nanoparticles in PVA solution and catalytic activity of their electrospun PVA nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ag nanoparticles (NPs) were prepared by chemical reduction based on green synthesis in an aqueous poly(vinyl alcohol) (PVA) solution with different temperatures and pHs. The PVA and maltose were used as stabilizing and reducing agents, respectively. Silver nitrate (AgNO3) precursor for Ag NPs was also used by 1 wt% on the base of the weight of PVA. The formation of Ag NPs was examined by UV-Vis spectrophotometer, and their size was measured by transmission electron microscopy (TEM), and nanoparticle size analyzer (NPSA). The formation rate of Ag NPs in the PVA solution increased with increasing temperature and pH, whereas the size of Ag NPs stabilized with PVA increased with increasing temperature, or with decreasing pH. Subsequently, the PVA nanofibrous matrix containing Ag NPs was prepared, by electrospinning PVA solution with Ag NPs, and followed by heat treatment. The morphology and crystalline structure of PVA nanofibers with Ag NPs was observed with field emission scanning electron microscopy (FE-SEM), and X-ray diffractometer (XRD), respectively. From the degradation reaction of methylene blue (MB) using PVA nanofibers web and film, it was found that the catalytic activity of PVA matrices with Ag NPs was strongly dependent on the surface area of the PVA matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. An, D. Wang, Q. Luo, X. Li, M. Li, and X. Yuan, Prog. Chem., 20, 859 (2008).

    CAS  Google Scholar 

  2. O. V. Kharissova, H. V. R. Dias, B. I. Kharisov, B. O. Perez, V. M. J. Perez, Trends Biotechnol., 31, 240 (2013).

    Article  CAS  Google Scholar 

  3. S. Sarina, E. R. Waciawik, and H. Y. Zhu, Green Chem., 15, 1814 (2013).

    Article  CAS  Google Scholar 

  4. Y. Wan, Z. Guo, X. Jiang, K. Fang, X. Lu, Y. Zhang, N. Gu, J. Colloid Interface Sci., 394, 263 (2013).

    Article  CAS  Google Scholar 

  5. V. K. Sharma, R. A. Yngard, and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009).

    Article  CAS  Google Scholar 

  6. X. Shi, I. Lee, and J. R. Baker Jr, J. Mater. Chem., 18, 586 (2008).

    Article  CAS  Google Scholar 

  7. H. Liu, H. Wang, R. Guo, X. Cao, J. Zhao, Y. Luo, M. Shen, G. Zhang, and X. Shi, Polym. Chem., 1, 1677 (2010).

    Article  CAS  Google Scholar 

  8. E. S. Cozza, O. Monticelli, and E. Marsano, Macromol. Mater. Eng., 295, 791 (2010).

    Article  CAS  Google Scholar 

  9. M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk, E. E. Makhaeva, A. R. Khokhlov, V. G. Matveeva, and M. G. Sulman, Macromolecules, 37, 1787 (2004).

    Article  CAS  Google Scholar 

  10. S. Kedem, J. Schmidt, Y. Paz, and Y. Cohen, Langmuir, 21, 5600 (2005).

    Article  CAS  Google Scholar 

  11. X. Lu, Y. Zhao, C. Wang, and Y. Wei, Macromol. Rapid Commun., 26, 1325 (2005).

    Article  CAS  Google Scholar 

  12. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, Deslination, 308, 15 (2013).

    Article  CAS  Google Scholar 

  13. N. Mahanta and S. Valiyaveettil, RSC Adv., 2, 11389 (2012).

    Article  CAS  Google Scholar 

  14. A. Celebioglu, Z. Aytac, O. C. O. Umu, and A. Dana, Carbohydr. Polym., 99, 808 (2014).

    Article  CAS  Google Scholar 

  15. H. Zhu, M. Du, M. Zhang, P. Wang, S. Y. Bao, Y. Q. Fu, and J. M. Yao, Sens. Actuator B.-Chem., 185, 608 (2013).

    Article  CAS  Google Scholar 

  16. Y. Zhao, Y. Zhou, X. Wu, L. Wang, L. Xu, and S. Wei, Appl. Surf. Sci., 258, 8867 (2012).

    Article  CAS  Google Scholar 

  17. C. Li, R. Fu, C. Yu, Z. Li, H. Guan, D. Hu, D. Zhao, and L. Lu, Int. J. Nanomed., 8, 4132 (2013).

    Google Scholar 

  18. R. G. F. Costa, C. Ribeiro, and L. H. C. Mattoso, Sci. Adv. Mater., 2, 157 (2010).

    Article  CAS  Google Scholar 

  19. J. Y. Chun, H. K. Kang, L. Jeong, Y. O. Kang, J. E. Oh, I. S. Yeo, S. Y. Jung, W. H. Park, and B. M. Min, Colloid Surf. B-Biointerfaces, 78, 334 (2010).

    Article  CAS  Google Scholar 

  20. S. Mehta, S. Chaudhary, and M. Gradzielski, J. Colloid Interface Sci., 343, 447 (2010).

    Article  CAS  Google Scholar 

  21. D. Pencheva, R. Bryaskova, and T. Kantardjiev, Mater. Sci. Eng. C-Mater. Biol. Appl., 32, 2048 (2012).

    Article  CAS  Google Scholar 

  22. F. Liao, Z. F. Wang, and X. Hu, Ionics, 17, 177 (2011).

    Article  CAS  Google Scholar 

  23. K. H. Hong, J. L. Park, I. H. Sul, J. H. Youk, and T. J. Kang, J. Polym. Sci. Pt. B-Polym. Phys., 44, 2468 (2006).

    Article  CAS  Google Scholar 

  24. S. J. Lee, S. G. Lee, H. Kim, and W. S. Lyoo, J. Appl. Polym. Sci., 106, 3430 (2007).

    Article  CAS  Google Scholar 

  25. W. J. Jin, H. J. Jeon, J. H. Kim, and J. H. Youk, Synth. Met., 157, 454 (2007).

    Article  CAS  Google Scholar 

  26. S. Xiao, W. Hui, H. Ma, and X. Fang, RSC Adv., 2, 319 (2012).

    Article  CAS  Google Scholar 

  27. Y. B. Kim, D. Cho, and W. H. Park, J. Appl. Polym. Sci., 116, 449 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Ho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, J.Y., Kang, Y.O. & Park, W.H. Formation of Ag nanoparticles in PVA solution and catalytic activity of their electrospun PVA nanofibers. Fibers Polym 16, 840–849 (2015). https://doi.org/10.1007/s12221-015-0840-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0840-0

Keywords

Navigation