Skip to main content
Log in

Manufacturing technique and acoustic evaluation of sandwich laminates reinforced high-resilience inter/intra-ply hybrid composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study focused on the fabrication and acoustic property evaluation of sandwich cover-ply-reinforced highresilience thermal-bonding nonwoven hybrid composites. P-phenyleneterephthalamides and bicomponent high-resilience bonding polyester intra-ply hybrid nonwoven fabrics were compounded with glass plain fabric to produce the high strength sandwich structural cover ply by means of needle punching and thermal bonding to reinforce the whole composites and dissipate energy when being impacted. Then, the acoustic absorption properties of the homogenous intra-ply hybrid meshwork layer were investigated before and after being reinforced with the aforementioned cover ply. The influencing factors, including areal density, fiber blending ratio, needle punching depth, and air cavity thickness between back plate of the impedance tube and composites, were comparatively investigated. Results revealed that hybrid composites exhibited exceedingly high acoustic absorption properties. Acoustic absorption coefficients were promoted with increases in areal densities and fiber blending ratio of 3D crimped hollow polyester, particularly at low-mid frequency range. In addition, needle punching depths and back air cavity thicknesses considerably affected the average absorption coefficients. The meshwork center layer reinforced with sandwich structural cover-ply perform high resilience properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Crocker, “Handbook of Noise and Vibration Control”, John Wiley & Sons Inc, 2007.

    Book  Google Scholar 

  2. Y. E. Lee and C. W. Joo, J. Appl. Polym. Sci., 92, 2295 (2004).

    Article  CAS  Google Scholar 

  3. SoundTex, Freudenberg. http://www.freudenberg-nw.com/en/solutions/Pages/SoundTex.aspx (2010), accessed 15 March 2014.

  4. K. A. Jayaraman, MS Dissertation, NCSU, Raleigh, USA, 2005.

    Google Scholar 

  5. Y. E. Lee and C. W. Joo, AUTEX Res. J., 3, 25 (2003).

    Google Scholar 

  6. M. Kücük and Y. Korkmaz, Text. Res. J., 82, 2043 (2012).

    Article  Google Scholar 

  7. Y. Na, T. Agnhage, and G. Cho, Fiber. Polym., 13, 1348 (2012).

    Article  CAS  Google Scholar 

  8. Y. Na, J. Lancaster, J. Casali, and G. Cho, Text. Res. J., 77, 330 (2007).

    Article  CAS  Google Scholar 

  9. Y. Shoshani and Y. Yakubov, Text. Res. J., 69, 519 (1999).

    Article  CAS  Google Scholar 

  10. J. Manning and R. Panneton, Text. Res. J., 83, 1356 (2013).

    Article  CAS  Google Scholar 

  11. J. Liu, X. Liu, Y. Xu, and W. Bao, J. Text. Ins., DOI: 10.1080/00405000.2013.875247 (2014).

    Google Scholar 

  12. Y. Du, N. Yan, and M. T. Kortschot, J. Mater. Sci., 49, 2630 (2014).

    Article  CAS  Google Scholar 

  13. T. D. S. Pegoretti, F. Mathieux, D. Evrard, D. Brissaud, and J. R. D. F. Arruda, Resour. Conserv. Recy., 84, 1 (2014).

    Article  Google Scholar 

  14. S. Jiang, Y. Xu, H. Zhang, C. B. White, and X. Yan, Appl. Acoust., 73, 243 (2012).

    Article  Google Scholar 

  15. A. Tadeu, J. António, and D. Mateus, Appl. Acoust., 65, 15 (2004).

    Article  Google Scholar 

  16. X. L. Zhang and C. P. Liu, Appl. Mech. Mater., 275, 1623 (2013).

    Google Scholar 

  17. K. O. Ballagh, Appl. Acoust., 48, 101 (1996).

    Article  Google Scholar 

  18. N. D. Yilmaz, P. Banks-Lee, N. B. Powel, and S. Michielsen, J. Appl. Polym. Sci., 121, 3056 (2011).

    Article  CAS  Google Scholar 

  19. Y. L. Hsieh, Text. Res. J., 65, 299 (1995).

    Article  CAS  Google Scholar 

  20. ATSM E 1050, Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System, 2012.

    Google Scholar 

  21. ASTM C 423, Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method, 2009.

    Google Scholar 

  22. ASTM D3574, Standard Test Methods for Flexible Cellular Materials-Slab, Bonded, and Molded Urethane Foams, 2011.

    Google Scholar 

  23. C. W. Lou, J. H. Lin, and K. H. Su, Text. Res. J., 75, 390 (2005).

    Article  CAS  Google Scholar 

  24. P. K. Tang and W. A. Sirignano, J. Sound. Vib., 26, 247 (1973).

    Article  Google Scholar 

  25. R. Zulkifli, M. J. M. Nor, and S. Abdullah, Key. Eng. Mater., 462, 1284 (2011).

    Article  Google Scholar 

  26. H. S. Seddeq, N. M. Aly, and M. H. Elshakankery, J. Ind. Text., 43, 56 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, R., Wang, R., Lou, CW. et al. Manufacturing technique and acoustic evaluation of sandwich laminates reinforced high-resilience inter/intra-ply hybrid composites. Fibers Polym 15, 2201–2210 (2014). https://doi.org/10.1007/s12221-014-2201-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2201-9

Keywords

Navigation