Skip to main content
Log in

Assessment of the mechanical properties of nanoclays enhanced low Tg epoxy resins

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The mechanical properties of the nanocomposites are dependent, not only of the clays content but, also, of the resin type and manufacturing process. In this context, the present study intends to develop a systematic study involving a low glass transition temperature (Tg) and low permeability epoxy resin (SR 1500 and the hardener SD 2503) with a commercially Nanomer I30 E nanoclays. Two dispersion processes were compared (direct (DM) and indirect method (IDM)) in terms of mechanical properties, as well as the influence of nanoclay content and hydro aging effect. It was possible to observe that the composites obtained by the indirect method present lower mechanical properties than the neat resin because there is residual acetone. For DM composites the tensile strength, fracture toughness and the specific energy absorbed by impact decreases with the reinforcement content, caused by particle agglomerates. Elastic modulus, at 25 °C, increases significantly and Tg increases slightly with the addition of nanoclays. Hydro aging promotes a progressive decreasing of the tensile strength and fracture toughness, with the clay content, reaching about 15 % and 7 %, respectively, for 6 wt% of nanoclays. On the other hand, a small increasing on specific energy absorbed was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Park and S. C. Jana, Polymer, 44, 2091 (2003).

    Article  CAS  Google Scholar 

  2. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003).

    Article  CAS  Google Scholar 

  3. Y. Zhou, F. Pervin, M. A. Biswas, V. K. Rangari, and S. Jeelani, Mater. Lett., 60, 869 (2006).

    Article  CAS  Google Scholar 

  4. M. Alexandre and P. Dubois, Mater. Sci. Eng. R-Rep., 28, 1 (2000).

    Article  Google Scholar 

  5. S. J. Ahmadi, Y. D. Huang, and W. Li, J. Mater. Sci., 39, 1919 (2004).

    Article  CAS  Google Scholar 

  6. H. Z. Shi, T. Lan, and T. J. Pinnavaia, Chem. Mater., 8, 1584 (1996).

    Article  CAS  Google Scholar 

  7. X. Lui and Q. Wu, Polymer, 42, 10013 (2001).

    Article  Google Scholar 

  8. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Appl. Polym. Sci., 55, 119 (1995).

    Article  CAS  Google Scholar 

  9. B. Wang, N. Qi, W. Gong, X. W. Li, and Y. P. Zhen, Radiation Phys. Chem., 76, 146 (2007).

    Article  CAS  Google Scholar 

  10. L. Wang, K. Wang, L. Chen, Y. Zhang, and C. He, Compos. Part A-Appl. S., 37, 1890 (2006).

    Article  Google Scholar 

  11. W. Lui, S. V. Hoa, and M. Pugh, Compos. Sci. Technol., 65, 307 (2005).

    Article  Google Scholar 

  12. J. P. Harcup and A. F. Yee, ANTEC’99 Conf. Proc., 3, 3396 (1999).

    Google Scholar 

  13. X. Kornmann, R. Thomann, R. Mulhaupt, J. Finter, and L. Berlund, J. Appl. Polym. Sci., 86, 2643 (2002).

    Article  CAS  Google Scholar 

  14. A. J. Kinloch and A. C. Taylor, J. Mater. Sci. Lett., 22, 1439 (2003).

    Article  CAS  Google Scholar 

  15. J. W. Boo, L. Sun, J. Liu, E. Moghbelli, A. Clearfield, H.-J. Sue, H. Pham, and N. Verghese, J. Polym. Sci. Pol. Phys., 45, 1459 (2007).

    Article  CAS  Google Scholar 

  16. A. Okada, M. Kawasumi, A. Usuki, Y. Kojima, T. Kurauchi, and O. Kamigaito, Mater. Res. Soc. Proc., 171, 45 (1990).

    Article  CAS  Google Scholar 

  17. P. B. Messersmith and E. P. Giannelis, J. Appl. Polym. Sci., 33, 1047 (1995).

    Article  CAS  Google Scholar 

  18. L. Wang, K. Wang, L. Chen, and C. He, Polym. Eng. Sci., 46, 215 (2006).

    Article  CAS  Google Scholar 

  19. T. Glaskova and A. Aniskevich, J. Appl. Polym. Sci., 116, 493 (2010).

    Article  CAS  Google Scholar 

  20. X. H. Liu and Q. J. Wu, Macromol. Mater. Eng., 287, 180 (2002).

    Article  CAS  Google Scholar 

  21. O. Becker, R. J. Varley, and G. P. Simon, Eur. Polym. J., 40, 187 (2004).

    Article  CAS  Google Scholar 

  22. M. R. Loos, L. A. F. Coelho, S. H. Pezzin, and S. C. Amico, Polímeros, 18, 76 (2008).

    Article  CAS  Google Scholar 

  23. S. H. Dickens and B. H. Cho, Dent. Mater., 21, 354 (2005).

    Article  CAS  Google Scholar 

  24. J.-J. Max and C. Chapados, J. Chem. Phys., 126, 154511 (2007).

    Article  Google Scholar 

  25. H. Torii, M. Musso, and M. G. Giorgini, J. Phys. Chem. A, 109, 7797 (2005).

    Article  CAS  Google Scholar 

  26. M.-W. Ho, C.-K. Lam, K.-T. Lau, D. H. L. Ng, and D. Hui, Compos. Struct., 75, 415 (2006).

    Article  Google Scholar 

  27. J. H. Park and S. C. Jana, Polymer, 44, 2091 (2003).

    Article  CAS  Google Scholar 

  28. J. Ren, Y. Huang, Y. Liu, and X. Tang, Polym. Testing, 24, 316 (2005).

    Article  CAS  Google Scholar 

  29. T. Lan and T. J. Pinnavaia, Chem. Mater., 6, 2216 (1994).

    Article  CAS  Google Scholar 

  30. T. Glaskova and A. Aniskevich, Compos. Sci. Technol., 69, 2711 (2009).

    Article  CAS  Google Scholar 

  31. L. Lui, Z. Qi, and X. Zhu, J. Appl. Polym. Sci., 71, 1133 (1999).

    Article  Google Scholar 

  32. J.-K. Kim, C. Hu, R. S. C. Woo, and M.-L. Sham, Compos. Sci. Technol., 65, 805 (2005).

    Article  CAS  Google Scholar 

  33. G. Srinath and R. Gnanamoorthy, Compos. Sci. Technol., 67, 399 (2007).

    Article  CAS  Google Scholar 

  34. O. Becker, R. J. Varley, and G. P. Simon, Eur. Polym. J., 40, 187 (2004).

    Article  CAS  Google Scholar 

  35. W. S. Chow, Express. Polym. Lett., 1, 104 (2007).

    Article  CAS  Google Scholar 

  36. A. G. Supri, H. Salmah, and K. Hazwan, Malaysian Polym. J., 3, 39 (2008).

    Google Scholar 

  37. J. A. M. Ferreira, P. N. B. Reis, J. D. M. Costa, B. C. H. Richardson, and M. O. W. Richardson, Compos. Part BEng., 42, 1366 (2011).

    Article  Google Scholar 

  38. J. A. M. Ferreira, P. N. B. Reis, J. D. M. Costa, and M. O. W. Richardson, J. Thermoplast. Compos., 26, 721 (2011).

    Article  Google Scholar 

  39. K. Wang, L. Chen, J. Wu, M. L. Toh, C. He, and A. F. Yee, Macromolecules, 38, 788 (2005).

    Article  CAS  Google Scholar 

  40. P. N. B. Reis, J. A. M. Ferreira, P. Santos, M. O. W. Richardson, and J. B. Santos, Compos. Struct., 94, 3520 (2012).

    Article  Google Scholar 

  41. P. N. B. Reis, J. A. M. Ferreira, Z. Y. Zhang, T. Benameur, and M. O. W. Richardson, Compos. Part B-Eng., 46, 7 (2012).

    Article  Google Scholar 

  42. J. A. M. Ferreira, P. N. B. Reis, J. D. M. Costa, and M. O. W. Richardson, J. Compos. Mater., 45, 1885 (2012).

    Google Scholar 

  43. C.-K. Lam, H.-Y. Cheung, K.-T. Lau, L.-M. Zhou, M.-W. Ho, and D. Hui, Compos. Part B-Eng., 36, 263 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. B. Reis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, J.A.M., Reis, P.N.B., Costa, J.D.M. et al. Assessment of the mechanical properties of nanoclays enhanced low Tg epoxy resins. Fibers Polym 15, 1677–1684 (2014). https://doi.org/10.1007/s12221-014-1677-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1677-7

Keywords

Navigation