Skip to main content
Log in

The formation and UV-blocking property of flower-like ZnO nanorod on electrospun natural cotton cellulose nanofibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We report a simple and effective route to fabricate branched hierarchical flower-like nanostructures of ZnO on natural cotton cellulose fiber by combining electrospinning and the low-temperature hydrothermal growth technique. First, natural cotton cellulose nanofibers were prepared by electrospinning cotton cellulose /LiCl/DMAc solution. The electrospun cotton cellulose nanofibers served as flexible substrate, on which the branched, highly uniform, and dense flower-like ZnO were hydrothermally grown. The as-prepared cotton cellulose/ZnO nanocomposite fibers were characterized by SEM, HRTEM, EDS, TG, and UV-vis spectrophotometry. The modified cotton cellulose nanocomposite fibers were not only exhibiting dispersed uniformly, but also rendered excellent protection against UV radiation because of the incorporation of flower-like ZnO nanostructures. Therefore, the as-prepared nanocomposite fibers demonstrate a significant performance in ultraviolet protection and provide a potential application for ultraviolet detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Low, J. Somers, H. S. Kho, I. J. Davies, and B. A. Latella, Compos. Interface, 16, 659 (2009).

    Article  CAS  Google Scholar 

  2. B. Surma-Slusarska, S. Presler, and D. Danielewicz, Fibres. Text. East. Eur., 16, 108 (2008).

    CAS  Google Scholar 

  3. T. A. Wheatley, Drug. Dev. Ind. Pharm, 33, 281 (2007).

    Article  CAS  Google Scholar 

  4. T. Grafe and K. Graham, Int. Nonwov. J., 12, 51 (2003).

    CAS  Google Scholar 

  5. S. Liu, L. Zhang, J. Zhou, and R. Wu, J. Phys. Chem. C, 112, 4538 (2008).

    Article  CAS  Google Scholar 

  6. J. Zeng, S. Liu, J. Cai, and L. Zhang, J. Phys. Chem. C, 114, 7806 (2010).

    Article  CAS  Google Scholar 

  7. H. Gullapalli, V. S. M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, and P. M. Ajayan, Small, 6, 1641 (2010).

    Article  CAS  Google Scholar 

  8. A. Kumar, H. Gullapalli, K. Balakrishnan, A. Botello- Mendez, R. Vajtai, M. Terrones, and P. M. Ajayan, Small, 7, 2173 (2011).

    Article  CAS  Google Scholar 

  9. E. L. Bai, L. Cen, F. L. Chen, and Y. H. Zhou, New. Chem. Mater, 40, 35 (2012).

    Google Scholar 

  10. H. F. Wang, Y. Y. Chen, and H. Lin, J. Soochow. Univ., 23 (2003).

  11. A. Mihranyan, L. Nyholm, A. E. G. Bennett, and M. Strømme, J. Phys. Chem. B, 112, 12249 (2008).

    Article  CAS  Google Scholar 

  12. A. Yadav, V. Prasad, A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran, B. Mater. Sci., 29, 641 (2006).

    Article  CAS  Google Scholar 

  13. J.-H. He, Y.-Q. Wan, and L. Xu, Chaos. Soliton. Fract, 33, 26 (2007).

    Article  CAS  Google Scholar 

  14. A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. Kaplan, M. Brittberg, and P. Gatenholm, Biomaterials, 26, 419 (2005).

    Article  CAS  Google Scholar 

  15. A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, and J. Kiwi, J. Photoch. Photobio A, 174, 156 (2005).

    Article  CAS  Google Scholar 

  16. A. Manekkathodi, M. Y. Lu, C. W. Wang, and L. J. Chen, Adv. Mater., 22, 4059 (2010).

    Article  CAS  Google Scholar 

  17. C. R. Li, R. Chen, X. Q. Zhang, J. Xiong, Y. Y. Zheng, and W. J. Dong, Fiber. Polym., 12, 345 (2011).

    Article  CAS  Google Scholar 

  18. R. Wang, J. H. Xin, X. M. Tao, and W. A. Daoud, Chem. Phys. Lett., 398, 250 (2004).

    Article  CAS  Google Scholar 

  19. R. Wang, J. Xin, and X. Tao, Inorg. Chem., 44, 3926 (2005).

    Article  CAS  Google Scholar 

  20. H. Lu, B. Fei, J. H. Xin, R. Wang, and L. Li, J. Colloid. Interface Sci., 300, 111 (2006).

    Article  CAS  Google Scholar 

  21. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano. Lett., 5, 1231 (2005).

    Article  CAS  Google Scholar 

  22. P. Tonto, O. Mekasuwandumrong, S. Phatanasri, V. Pavarajarn, and P. Praserthdam, Ceram. Int., 34, 57 (2008).

    Article  CAS  Google Scholar 

  23. C. R. Li, S. X. Shu, R. Chen, B. Chen, and W. Dong, J. Appl. Polym. Sci., DOI: 10.1002/app.39264.

  24. Y. Li, Y. Zou, and Y. Hou, Cellulose, 18, 1643 (2011).

    Article  CAS  Google Scholar 

  25. C. H. Ku and J. J. Wu, J. Phys. Chem. B, 110, 12981 (2006).

    Article  CAS  Google Scholar 

  26. J. Xu, H. L. Su, J. Han, Y. Chen, W. Q. Song, Y. Gu, W. J. Moon, and D. Zhang, Appl. Phys. A-Mater., 108, 235 (2012).

    Article  CAS  Google Scholar 

  27. B. Xu and Z. Cai, J. Appl. Polym. Sci., 108, 3781 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaorong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Xie, Y., Liu, Q. et al. The formation and UV-blocking property of flower-like ZnO nanorod on electrospun natural cotton cellulose nanofibers. Fibers Polym 15, 281–285 (2014). https://doi.org/10.1007/s12221-014-0281-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0281-1

Keywords

Navigation