Skip to main content
Log in

CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A method is presented to immobilize Cu-BTC metal-organic framework (MOF-199) particles by enmeshing them in nonwoven polyacrylonitrile (PAN) nanofibers creating a fibrous membrane with the potential ability to remove chemical warfare agents or pesticides from solution. These membranes were shown to effectively adsorb methyl parathion, an organophosphate pesticide. Based on solubility theory and experimental results, partitioning was determined to be the main mechanism of removal. After 2 hours, the PAN/MOF-199 membranes removed 88 % more methyl parathion than the unmodified PAN membranes and 62 % as much as the MOF-199 crystal powder. Since the MOF particles were enmeshed in the PAN fiber mats, the MOF particles were in a workable and flexible substrate. Potential applications of these functionalized fibrous membranes include protective clothing for agricultural workers or military personnel as well as filtration media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Banks, D. H. Hunter, and D. J. Wachal, Environ. Int., 31, 351 (2005).

    Article  CAS  Google Scholar 

  2. Y. C. Yang, J. A. Baker, and J. R. Ward, Chem. Rev., 92, 1729 (1992).

    Article  CAS  Google Scholar 

  3. D. E. Wilcox, Chem. Rev., 96, 2435 (1996).

    Article  CAS  Google Scholar 

  4. A. Vlyssides, E. M. Barampouti, S. Mai, D. Arapoglou, and A. Kotronarou, Environ. Sci. Technol., 38, 6125 (2004).

    Article  CAS  Google Scholar 

  5. P. A. Kolinko and D. V. Kozlov, Environ. Sci. Technol., 42, 4350 (2008).

    Article  CAS  Google Scholar 

  6. D. B. Kim, B. Gweon, S. Y. Moon, and W. Choe, Curr. Appl. Phys., 9, 1093 (2009).

    Article  Google Scholar 

  7. G. M. Zuo, Z. X. Cheng, G. W. Li, W. P. Shi, and T. Miao, Chem. Eng. J., 128, 135 (2007).

    Article  CAS  Google Scholar 

  8. L. E. Lange and S. K. Obendorf, Arch. Environ. Con. Tox., 62, 185 (2012).

    Article  CAS  Google Scholar 

  9. K. Dai, T. Y. Peng, H. Chen, J. Liu, and L. Zan, Environ. Sci. Technol., 43, 1540 (2009).

    Article  CAS  Google Scholar 

  10. G. W. Wagner, P. W. Bartram, O. Koper, and K. J. Klabunde, J. Phys. Chem. B, 103, 3225 (1999).

    Article  CAS  Google Scholar 

  11. G. W. Wagner, L. R. Procell, R. J. O’Connor, S. Munavalli, C. L. Carnes, P. N. Kapoor, and K. J. Klabunde, J. Am. Chem. Soc., 123, 1636 (2001).

    Article  CAS  Google Scholar 

  12. G. W. Wagner, L. R. Procell, and S. Munavalli, J. Phys. Chem. C, 111, 17564 (2007).

    Article  CAS  Google Scholar 

  13. T. H. Mahato, G. K. Prasad, B. Singh, J. Acharya, A. R. Srivastava, and R. Vijayaraghavan, J. Hazard. Mater., 165, 928 (2009).

    Article  CAS  Google Scholar 

  14. D. A. Panayotov and J. R. Morris, J. Phys. Chem. C, 112, 7496 (2008).

    Article  CAS  Google Scholar 

  15. I. Columbus, D. Waysbort, L. Shmueli, I. Nir, and D. Kaplan, Environ. Sci. Technol., 40, 3952 (2006).

    Article  CAS  Google Scholar 

  16. L. Bromberg, H. Schreuder-Gibson, W. R. Creasy, D. J. McGarvey, R. A. Fry, and T. A. Hatton, Ind. Eng. Chem. Res., 48, 1650 (2009).

    Article  CAS  Google Scholar 

  17. D. E. B. Gomes, R. D. Lins, P. G. Pascutti, C. H. Lei, and T. A. Soares, J. Phys. Chem. B, 114, 531 (2010).

    Article  CAS  Google Scholar 

  18. M. R. Seger and G. E. Maciel, Environ. Sci. Technol., 40, 797 (2006).

    Article  CAS  Google Scholar 

  19. M. R. Seger and G. E. Maciel, Environ. Sci. Technol., 40, 552 (2006).

    Article  CAS  Google Scholar 

  20. M. R. Seger and G. E. Maciel, Environ. Sci. Technol., 40, 791 (2006).

    Article  CAS  Google Scholar 

  21. X. Fei and G. Sun, Ind. Eng. Chem. Res., 48, 5604 (2009).

    Article  CAS  Google Scholar 

  22. K. Knagge, M. Johnson, V. H. Grassian, and S. C. Larsen, Langmuir, 22, 11077 (2006).

    Article  CAS  Google Scholar 

  23. G. Srinivasan, D. H. Reneker, Polym. Int., 36, 195 (2006).

    Article  Google Scholar 

  24. S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Mater. Today, 9, 40 (2006).

    Article  CAS  Google Scholar 

  25. R. Ramaseshan, S. Sundarrajan, Y. Liu, R. S. Barhate, N. L. Lala, and S. Ramakrishna, Nanotechnology, 17, 2947 (2006).

    Article  CAS  Google Scholar 

  26. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, and O. M. Yaghi, Science, 295, 469 (2002).

    Article  CAS  Google Scholar 

  27. S. Bordiga, L. Regli, F. Bonino, E. Groppo, C. Lamberti, B. Xiao, P. S. Wheatley, R. E. Morris, and A. Zecchina, Phys. Chem. Chem. Phys., 9, 2676 (2007).

    Article  CAS  Google Scholar 

  28. C. Prestipino, L. Regli, J. G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P. L. Solari, K. O. Kongshaug, and S. Bordiga, Chem. Mater., 18, 1337 (2006).

    Article  CAS  Google Scholar 

  29. D. Britt, D. Furukawa, B. Wang, T. G. Glover, and O. M. Yaghi, P. Natl. Acad. Sci. USA, 106, 20637 (2009).

    Article  CAS  Google Scholar 

  30. D. Britt, D. Tranchemontagne, and O. M. Yaghi, P. Natl. Acad. Sci. USA, 105, 11623 (2009).

    Article  Google Scholar 

  31. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 131, 8875 (2009).

    Article  CAS  Google Scholar 

  32. C. Petit, L. Huan, J. Jagiello, J. Kenvin, K. E. Gubbins, and T. J. Bandosz, Langmuir, 27, 13043 (2011).

    Article  CAS  Google Scholar 

  33. J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 44, 4670 (2005).

    Article  CAS  Google Scholar 

  34. D. J. Tranchemontagne, J. R. Hunt, and O. M. Yaghi, Tetrahedron, 64, 8553 (2008).

    Article  CAS  Google Scholar 

  35. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, Science, 283, 1148 (1999).

    Article  CAS  Google Scholar 

  36. S. Lowell and J. E. Shields, “Powder Surface Area and Porosity”, 2nd ed., Chapman and Hall, New York, NY, 1984.

    Book  Google Scholar 

  37. C. Petit, J. Burress, and T. J. Bandosz, Carbon, 49, 563 (2011).

    Article  CAS  Google Scholar 

  38. P. Dunn and B. C. Ennis, Thermochim. Acta, 3, 81 (1971).

    Article  CAS  Google Scholar 

  39. S. K. Obendorf, H. Liu, K. Tan, M. J. Leonard, T. J. Young, and M. J. Incorvia, J. Surfact. Deterg., 12, 43 (2009).

    Article  CAS  Google Scholar 

  40. A. F. M. Barton, “CRC Handbook of Solubility Parameters and Other Cohesion Parameters”, 2nd ed., CRC Press, Boca Raton, FL, 1991.

    Google Scholar 

  41. D. W. van Krevelen and P. J. Hoftyzer, “Properties of Polymers: Their Estimation and Correlation with Chemical Structure”, 2nd ed., Elsevier, Amsterdam, 1976.

    Google Scholar 

  42. D. Elangovan, U. Nidoni, I. E. Yuzay, S. E. M. Selke, and R. Auras, Ind. Eng. Chem., 50, 11136 (2011).

    Article  CAS  Google Scholar 

  43. S. Hansen, “Hansen Solubility Parameters: A User’s Handbook”, CRC Press, Boca Raton, FL, 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Lange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, L.E., Ochanda, F.O., Obendorf, S.K. et al. CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers Polym 15, 200–207 (2014). https://doi.org/10.1007/s12221-014-0200-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0200-5

Keywords

Navigation