Skip to main content
Log in

High yield preparation of keratin powder from wool fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

A descaling and oxidation pretreatment was employed to maximize the yield of cortical cells in the disintegration process of wool fiber. The results indicated that the productivity of intact cortical cells was greatly increased by moderate oxidation pretreatment in 1.6 % per-acetic acid within 2 h, but the yield would be decreased by further oxidation pretreatment. In order to give a reasonable explanation for this fact, the effect of the increasing time of oxidation pretreatment on the yield of intact cortical cells was investigated by means of spectral analysis using FT-IR and XRD. The intensity of the peak at 1040 and 1173 cm−1 in FT-Infrared spectrum gradually increased with increasing oxidation pretreatment time, suggesting that more and more SS bonds were cleaved to form cysteic acid. X-ray Diffraction investigation showed that the crystallinity of wool fiber obviously decreased when the time of oxidation pretreatment exceeded 2 h. The combined results of FT-IR and XRD revealed that SS bonds in the amorphous region of wool fiber were first cleaved in the fiber components. The selective cleavage of SS bonds in the amorphous region by the appropriate oxidation pretreatment can effectively decrease the bonding force between the components of wool fiber and enhance the yield of intact cortical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fan and W. Yu, Waste Manage Res., 28, 44 (2010).

    Article  CAS  Google Scholar 

  2. K. Yamauchi, A. Yamauchi, T. Kusunoki, A. Kohda, and Y. Konishi, J. Biomed. Mater. Res., 31, 439 (1996).

    Article  CAS  Google Scholar 

  3. K. Yamauchi, K. Hamada, and H. Seino, J.P. Patent, 10337466 (1998).

  4. J. Koga, H. Asai, and H. Ubara in “Proceeding of the 9th International Wool Textile Research Conference”, p.195, 1995.

  5. A. Tachibana, Y. Furuta, H. Takeshima, T. Tanabe, and K. Yamauchi, J. Biotechnol., 93, 165 (2002).

    Article  CAS  Google Scholar 

  6. K. Katoh, T. Tanabe, and K. Yamauchi, Biomaterials, 25, 4255 (2004).

    Article  CAS  Google Scholar 

  7. A. Aluigi, C. Vineis, A. Ceria, and C. Tonin, Compos. Part A-Appl. Sci. Manuf., 39, 126 (2008).

    Article  Google Scholar 

  8. J. Fan, J.-F. Liu, and J.-H. He, Int. J. Nonlin. Sci. Num., 9, 293 (2008).

    Article  Google Scholar 

  9. J.-H. He, Z.-F. Ren, J. Fan, and L. Xu, Chaos. Soliton Fract., 41, 1839 (2009).

    Article  CAS  Google Scholar 

  10. G. E. Rogers, J. Ultras. Res., 2, 309 (1959).

    Article  CAS  Google Scholar 

  11. M. Feughelman, “Mechanical Properties and Structure of α-keratin Fibres”, University of New South Wales Press, Sydney, AUS, 1997.

    Google Scholar 

  12. J. H. Bradbury, G. V. Chapman, and N. L. R. King, Aust. J. Biol. Sci., 18, 353 (1965).

    CAS  Google Scholar 

  13. J. H. Bradbury and K. F. Ley, Aust. J. Biol. Sci., 25, 1235 (1972).

    CAS  Google Scholar 

  14. D. E. Peters and J. H. Bradbury, Aust. J. Biol. Sci., 25, 1225 (1972).

    CAS  Google Scholar 

  15. G. M. Jeffrey, J. Sikorski, and H. J. Woods, “The Microfibrillar Structure of Keratin Fibres”, Australia, 1956.

  16. V. G. Kulkarni and J. H. Bradbury, Aust. J. Biol. Sci., 27, 383 (1974).

    CAS  Google Scholar 

  17. J. Fan and W. Yu in “Textile Bioengineering and Informatics Symposium Proceedings” (Y. Li, X. Luo, J. Li, and A. Chen Eds.), p.307, HongKong, China, 2008.

  18. J. Fan and W.-D. Yu in “Proceedings of 2009 International Textile Science and Technology Forum” (M. Yao Ed.), p.310, Xi’an, China, 2009.

  19. J. Fan and W. Yu, Res. J. Text. Appa, 13, 69 (2009).

    CAS  Google Scholar 

  20. J. Fan and W.-D. Yu in “Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials”, p.721, Shanghai, China, 2007.

  21. P. Alexander, M. Fox, and R. F. Hudson, Biochem. J., 49, 129 (1951).

    CAS  Google Scholar 

  22. G. J. Weston, Biochim Biophys Acta, 17, 462 (1955).

    Article  CAS  Google Scholar 

  23. F. J. Douthwaite, D. M. Lewis, and U. Schumacher-Hamedate, Text. Res. J., 63, 177 (1993).

    Article  CAS  Google Scholar 

  24. P. Alexander, R. F. Hudson, and M. Fox, Biochem. J., 46, 27 (1950).

    CAS  Google Scholar 

  25. J. H. Bradbury and D. E. Peters, Text. Res. J., 42, 471 (1972).

    Article  CAS  Google Scholar 

  26. F. Sanger, Biochem. J., 45, 563 (1949).

    CAS  Google Scholar 

  27. E. G. Bendit, Text. Res. J., 30, 547 (1960).

    Article  CAS  Google Scholar 

  28. G. M. Jeffrey, J. Sikorsk, and H. J. Woods, Text. Res. J., 25, 714 (1955).

    Article  Google Scholar 

  29. J. B. Speakman, Proc. R. Soc. Lond. A, 132, 167 (1931).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Yu, Wd. High yield preparation of keratin powder from wool fiber. Fibers Polym 13, 1044–1049 (2012). https://doi.org/10.1007/s12221-012-1044-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-1044-5

Keywords

Navigation