Skip to main content
Log in

Analysis of two soft computing modeling methodologies for predicting thickness loss of persian hand-knotted carpets

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Thickness loss caused by static and dynamic loads is one of the most important quality factors in carpets. This property is influenced by pile yarn characteristics and carpet construction parameters. Exploring the relationship between thickness loss and effective factors is highly significant to optimize the selection of the variables. Soft computing approaches, which are potent data-modeling tools in capturing complex input-output relationships, seem to be the powerful technique to decipher the above-mentioned relationship. This paper presents two different modeling methodologies for predicting thickness loss of Persian hand-knotted carpets. At first, several topologies with different architectures were used to get the best neural-network model. Since, ANN model is a black box and did not succeed in indicating inter-relationship between input and output parameters, gene expression programming (GEP) is presented here as another intelligent algorithm to predict thickness loss of the carpets. Our study showed that, GEP model has a significant priority over the ANN. The correlation coefficient (R-value) and mean square error (MSE) for GEP model were 0.950 and 0.219 respectively, while these parameters were 0.707 and 0.510 for ANN model. This indicates the desirable predictive power of GEP algorithm. Based on the proposed models, the dominant parameter on thickness loss found to be knot density and content of slipe wool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kamali Dolatabadi, M. Montazer, and M. Latifi, J. Text. Inst., 96, 1 (2005).

    Article  CAS  Google Scholar 

  2. S. A. Mirjalili and M. Sharzehee, J. Text. Inst., 96, 287 (2005).

    Article  CAS  Google Scholar 

  3. Y. Korkmaz and S. Dalci Kocer, J. Text. Inst., 101, 236 (2010).

    Article  CAS  Google Scholar 

  4. E. A. Ainsworth and G. E. Cusick, J. Text. Inst., 56, T25 (1965).

    Google Scholar 

  5. G. Dorothy and Clegg, L. Anderson, J. Text. Inst., 53, T347 (1962).

    Article  Google Scholar 

  6. N. Celik and E. Koc, Fibers Text. East. Eur., 18, 54 (2010).

    CAS  Google Scholar 

  7. S. J. Bassam, “A Study on the Physical and mechanical properties of symmetrical and Asymmetric knots”, pp.21–22, 40–42, Research Center for the Persian Carpets (PCRC), Iran, 2003.

    Google Scholar 

  8. S. A. Mojabi, S. Shaikhzadeh Najar, S. H. Hashemi, A. Rashidi, and S. J. Bassam, Fibers Text. East. Eur., 16, 57 (2008).

    CAS  Google Scholar 

  9. G. A. Carnaby, Text. Res. J, 51, 514 (1981).

    Article  Google Scholar 

  10. H. Liu, S. K. Tandon, and E. J. Wood, Text. Res. J, 72, 954 (2002).

    Article  CAS  Google Scholar 

  11. J. W. S. Hearle, H. Liu, S. K. Tandon, and E. J. Wood, J. Text. Inst., 96, 137 (2005).

    Article  Google Scholar 

  12. M. Dayiary, S. Shaikhzadeh Najar, and M. Shamsi, J. Text. Inst., 100, 688 (2009).

    Article  Google Scholar 

  13. K. Kimura, S. Kawabata, and H. Kawai, J. Text. Mach. Soc. Jap., 23, 67 (1970).

    Google Scholar 

  14. K. Kimura and S. Kawabata, J. Text. Mach. Soc. Jap., 24, 207 (1971).

    Google Scholar 

  15. F. Werny, Text. Res. J., 63, 194 (1993).

    Article  Google Scholar 

  16. T. Chen, C. Zhang, X. Chen, and L. Li, Res. J. Text. Appl., 11, 80 (2007).

    Google Scholar 

  17. R. Rajamanickam, S. Hansen, and S. Jayaraman, Text. Res. J., 67, 39 (1997).

    CAS  Google Scholar 

  18. A. Baykasoglu, A. Oztas, and E. Ozbay, Exp. Sys. Appl., 36, 6145 (2009).

    Article  Google Scholar 

  19. M. Dayik, Text. Res. J., 79, 963 (2009).

    Article  CAS  Google Scholar 

  20. L. Fausett, “Fundamentals of Neural Networks”, Prentice Hall, New Jersey, 1994.

    Google Scholar 

  21. J. C. Principe, N. R. Euliano, and W. C. Lefebvre, “Neural and Adaptive Systems”, John Wiley & Sons, USA, New York, 1999.

    Google Scholar 

  22. R. Beltran, L. Wang, and X. Wang, Text. Res. J., 74, 757 (2004).

    Article  CAS  Google Scholar 

  23. A. Majumdar, P. K. Majumdar, and B. Sarkar, Ind. J. Fiber. Text. Res., 30, 19 (2005).

    CAS  Google Scholar 

  24. R. Beltran, L. Wang, and X. Wang, J. Text. Inst., 97, 129 (2005).

    Article  Google Scholar 

  25. S. Sette, L. Boullart, and P. Kiekens, Text. Res. J., 65, 196 (1995).

    Article  CAS  Google Scholar 

  26. W. V. Steenlandt, D. Collet, S. Sette, P. Bernard, R. Luning, L. K. H. Bohland, and H. Schulz, Text. Res. J., 66, 55 (1996).

    Google Scholar 

  27. A. Majumdar, A. Mitra, D. Banerjee, and P. K. Majumdar, Res. J. Text. Appl., 14, 1 (2010).

    Google Scholar 

  28. G. Ferreira, Complex Systems, 13, 87 (2001).

    Google Scholar 

  29. M. J. Hasanpour, “Study on the Effects of Tanning Processes on the Characteristics of Wool Fibres and Pile Yarns”, MS Thesis, Isfahan University of Technology, Iran, 2000.

    Google Scholar 

  30. A. A. Gharahaghaji. M. Shanbeh, and M. Palhang, Text. Res. J., 77, 565 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Moghassem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghassem, A.R., Gharehaghaji, A.A. & Shaikhzadeh Najar, S. Analysis of two soft computing modeling methodologies for predicting thickness loss of persian hand-knotted carpets. Fibers Polym 13, 675–683 (2012). https://doi.org/10.1007/s12221-012-0675-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0675-x

Keywords

Navigation