Skip to main content
Log in

Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Thermal protection of firefighter protective clothing is greatly influenced by the air gap entrapped and moisture in clothing. In this paper, the effects of air gap size and position on thermal protective performance exposed to 84 kW/m2 heat source were investigated. Water was also added to thermal liner to understand the effect of air gap coupled with moisture on thermal protection. It was indicated that the TPP of fabrics system increased with the air gap size. The air gap position also greatly influenced the heat transfer during exposure to flash fire. Moisture added weakened the positive effect of air gap size when the air gap exists far from heat source, and almost eliminated the favorable effect of air gap position. However, when there is no air gap or small air gap between outer shell fabric and moisture barrier, moisture increased the thermal protection performance of multilayer fabrics system. The results obtained suggested that certain air gap entrapped in fabrics system and clothing microclimate could improve thermal protection, and the complicated effect of moisture should also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Barr, W. Gregson, and T. Reilly, Appl. Ergon., 41, 161 (2010).

    Article  Google Scholar 

  2. G. W. Song, Ph.D. Dissertation, North Carolina State University, North Carolina, 2002.

  3. D. A. Torvi, J. D. Dale, and B. Faulkner, J. Fire Prot. Eng., 10, 1 (1999).

    Article  Google Scholar 

  4. C. M. J. Sawcyn, MS Thesis, University of Saskatchewan, Saskatoon, 2003.

  5. F. L. Zhu and W. Y. Zhang, J. Fire Sci., 24, 465 (2006).

    Article  CAS  Google Scholar 

  6. G. W. Song, J. Ind. Text., 36, 193 (2007).

    Article  Google Scholar 

  7. T. Mah and G. W. Song, Text. Res. J., 80, 1317 (2010).

    Article  CAS  Google Scholar 

  8. T. Mah and G. W. Song, Text. Res. J., 80, 1473 (2010).

    Article  CAS  Google Scholar 

  9. Annual Report on Evaluating the Effect of Moisture on the Thermal Protective Performance of Firefighter Protective Clothing in Low Level Heat Exposure, TPACC-report, p.11.

  10. C. M. J. Sawcyn and D. A. Torvi, Text. Res. J., 79, 632 (2009).

    Article  CAS  Google Scholar 

  11. R. M. Rossi and T. Zimmerli, “Performance of Protective Clothing: Fifth Volume, ASTM STP 1237” (James S. Johnson and S. Z. Mansdorf Eds.), American Society for Testing and Materials, Philadelphia, 1995.

    Google Scholar 

  12. H. Mäkinen, J. Smolander, and H. Vuorinen, “Performance of Protective Clothing: Issues and Priorities for the 21st Century”, Second Symposium. (S. Z. Mansdorf, R. Sager, and A. P. Nielsen Eds.), pp.415–421, Philadelphia, PA, 1988.

  13. R. L. Barker, S. C. Guerth, R. V. Grimes, and H. Hamouda, Text. Res. J., 76, 27 (2006).

    Article  CAS  Google Scholar 

  14. L. K. Lawson, E. M. Crown, M. Y. Ackerman, and J. D. Dale, JOSE, 10, 227 (2004).

    Google Scholar 

  15. G. W. Song, S. Paskaluk, R. Sati, E. Crown, J. Dale, and M. Ackerman, Text. Res. J., 81, 311 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Yy., Lu, Yh., Li, J. et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance. Fibers Polym 13, 647–652 (2012). https://doi.org/10.1007/s12221-012-0647-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-0647-1

Keywords

Navigation