Skip to main content
Log in

Processing parameters optimization of multiple quality characteristics of open-end rotor spinning process for Bamboo charcoal and CVC blended fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the field of yarn spinning engineering, the importance of the processing parameters taken depends directly on the quality characteristics of the yarn. This study aimed to find the optimal processing parameters for an open-end rotor spinning frame at work to identify its multiple quality characteristics for yarn. In this study, Bamboo charcoal and cotton 70 %/polyester 30 % (CVC) blended fibers were adopted as the materials, and the open-end rotor spinning frame was used to spin the yarn. In order to identify optimal conditions of an open-end rotor spinning frame, the Taguchi experimental method was applied to design open-end rotor spinning experiments, and the L9 orthogonal array was chosen in accordance with nine sets of experiments and contained four control factors and three levels. Furthermore, a response surface methodology (RSM) was used to obtain the models of significant processing parameters for the strength, unevenness, I.P.I, and hairiness. Based on experiments designed to obtain an open-end rotor spun yarn Ne 30, the strength, unevenness, imperfection indicator/km (I.P.I) and hairiness were then chosen as the quality characteristics. In addition, grey relational analysis integrated the optimal processing parameter of multiple quality characteristics, and a confirmation experiment was performed. In conclusion, the optimal processing parameters under steady spinning conditions were a rotor speed of 88000 rpm, a feed speed of 0.392 m/min, and a winding speed of 39.466 m/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Lin and C. W. Chang, Text. Res. J., 78, 555 (2008).

    Article  CAS  Google Scholar 

  2. C. I. Huang, C. I. Su, C. W. Lou, W. H. Hsing, and J. H. Lin, “Proceedings of International Conference on Smart Materials-Smart/Intelligent Materials and Nanotechnology/2nd International Workshop on Functional Materials and Nanomaterials”, p.413, Chiang Mai, Thailand, 2008.

  3. C. A. Lin, T. C. An, and Y. H. Hsu, Polym.-Plast. Technol., 46, 1073 (2007).

    Article  CAS  Google Scholar 

  4. C.-F. J. Kuo, C. Y. Kao, and H. J. Wei, Polym.-Plast. Technol., accepted for publication (2008).

  5. J. C. Cheng, W. T. Lai, C. Y. Chou, and H. H. Lin, Mater. Sci. Tech. Ser., 23, 683 (2007).

    Article  CAS  Google Scholar 

  6. A. N. Haq, P. Marimuthu, and R. Jeyapaul, Int. J. Adv. Manuf. Tech., 37, 250 (2008).

    Article  Google Scholar 

  7. C.-F. J. Kuo and T. L. Su, Fiber. Polym., 7, 404 (2006).

    Article  CAS  Google Scholar 

  8. C. L. Lin, Mater. Manuf. Process., 19, 209 (2004).

    Article  CAS  Google Scholar 

  9. Y. M. Chiang and H. H. Hsieh, Comput. Ind. Eng., 56, 648 (2009).

    Article  Google Scholar 

  10. C.-F. J. Kuo and T. L. Su, Text. Res. J., 73, 461 (2003).

    Article  CAS  Google Scholar 

  11. A. C. Atkinson and A. N. Donev, “Optimum Experimental Designs”, pp.132–189, Oxford University Press, Oxford, 1992.

    Google Scholar 

  12. B. H. Boyacı, Biochem. Eng. J., 25, 55 (2005).

    Article  Google Scholar 

  13. S. Ibanoğlu and E. Ibanoğlu, J. Food Eng., 48, 277 (2001).

    Article  Google Scholar 

  14. S. G. Özkal, M. E. Yener, and L. Bayındırlı, Lebensm. -Wiss. Technol., 38, 611 (2005).

    Google Scholar 

  15. A. I. Varnalis, J. G. Brennan, D. B. Macdougall, and S. G. Gilmour, J. Food Eng., 61, 153 (2004).

    Article  Google Scholar 

  16. R. H. Yang and S. Y. Wang, Text. Res. J., 79, 555 (2009).

    Article  CAS  Google Scholar 

  17. P. Grosberg and S. A. Mansour, J. Text. Inst., 66, 389 (1975).

    Article  Google Scholar 

  18. P. R. Lord, Text. Res. J., 41, 778 (1971).

    Article  Google Scholar 

  19. J. Simpson and M. A. Patureau, Text. Res. J., 49, 468 (1979).

    Article  Google Scholar 

  20. Y. S. J. Cheng and K. P. S. Cheng, Text. Res. J., 74, 792 (2004).

    Article  CAS  Google Scholar 

  21. C.-F. J. Kuo, C. P. Tien, and C. H. Chiu, Int. J. Adv. Manuf. Tech., 32, 764 (2007).

    Article  Google Scholar 

  22. A. K. Soe, M. Takahashi, M. Nakajima, T. Matsuo, and T. Matsumoto, Text. Res. J., 74, 819 (2004).

    Article  CAS  Google Scholar 

  23. C.-F. J. Kuo, C. D. Chang, T. L. Su, and C. H. Lee, Fiber. Polym., 10, 394 (2009).

    Article  Google Scholar 

  24. T. J. Cutright and L. Meza, Environ. Int., 33, 338 (2007).

    Article  CAS  Google Scholar 

  25. S. J. Kalil, F. Maugeri, and M. I. Rodrigues, Process Biochem., 35, 539 (2000).

    Article  CAS  Google Scholar 

  26. C.-F. J. Kuo and T. L. Su, Fiber. Polym., 8, 654 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Feng Jeffrey Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, CF.J., Wei, HJ., Huang, CC. et al. Processing parameters optimization of multiple quality characteristics of open-end rotor spinning process for Bamboo charcoal and CVC blended fibers. Fibers Polym 11, 891–898 (2010). https://doi.org/10.1007/s12221-010-0891-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0891-1

Keywords

Navigation