Skip to main content
Log in

Surface modification of polyester fabrics by enzyme treatment

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the effect of enzymatic hydrolysis using lipase and cutinase on poly(ethyleneterephthalate) (PET) fabrics was investigated in an attempt to improve the hydrophilicity of these fabrics. The hydrolytic activity of the enzymes was expressed for variations in pH levels, temperatures, enzyme concentrations, and treatment times. The effects of using a nonionic surfactant were examined by measuring moisture regain and surface wettability. Finally, the fabric characteristics that were affected by enzyme treatment were evaluated by tensile strength and scanning electron microscopy. The optimal treatment conditions for lipase were determined to be a pH of 4.2, a temperature of 50 °C, a lipase concentration of 100 %, and a treatment time of 90 min; those for cutinase were determined to be a pH of 9.0, a temperature of 50 °C, a cutinase concentration of 100 %, and a treatment time of 60 min. At optimal enzymatic treatment conditions, we got the significant results of increase on the moisture regain and the water contact angle (WCA) and water absorbency effectively decreased. Triton X-100 facilitated cutinase hydrolysis on PET fabrics; however, it was ineffective for lipase. With enzymatic treatment, the tensile strength did not decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Heumann, A. Eberl, H. Pobeheim, S. Liebminger, G. Fischer-Colbrie, E. Almanse, A. Cavalco-Paulo, and G. M. Gübitz, J. Biochem. Biophys. Methods, 39, 89 (2006).

    Article  Google Scholar 

  2. M. A. M. E. Vertommen, V. A. Nierstrasz, M. van der Veer, and M. M. C. G. Warmoeskerken, J. Biotechnol., 120, 376 (2005).

    Article  CAS  Google Scholar 

  3. G. Fischer-Colbrie, S. Heumann, S. Liebminger, E. Almanse, A. Cavalco-Paulo, and G. M. Gübitz, Biocatal. Biotransfor., 22, 341 (2004).

    Article  CAS  Google Scholar 

  4. H. R. Kim and W. S. Song, Fiber. Polym., 9, 423 (2008).

    Article  CAS  Google Scholar 

  5. Y. L. Hsieh and L. A. Cram, Text. Res. J., 68, 311 (1998).

    Article  CAS  Google Scholar 

  6. A. Eberl, S. Heumann, R. Kotek, F. Kaufmann, S. Mitsche, A. Cavalco-Paulo, and G. M. Gübitz, J. Biotechnol., 135, 45 (2008).

    Article  CAS  Google Scholar 

  7. H. R. Kim and W. S. Song, Fiber. Polym., 7, 339 (2006).

    Article  CAS  Google Scholar 

  8. M. Y. Yoon, J. Kellis, and A. J. Poulose, AATCC Review, 2, 33 (2002).

    CAS  Google Scholar 

  9. Genencor Int., U. S. Patent, 6254645 (2001).

  10. Novozym®735, Product Information Sheet, Novozymes, 2003.

  11. T. Walter, J. Augusta, R. J. Muller, H. Widdecke, and J. Klein, Enzyme Microb. Tech., 17, 21 (1995).

    Article  Google Scholar 

  12. A. Cavalco-Paulo and G. M. Gübitz, “Textile Processing with Enzymes”, pp.96–191, CRC Press, Washington D.C., 2003.

    Book  Google Scholar 

  13. E. Karapinar and M. O. Sariisik, Fibers Text. East. Eur., 12, 79 (2004).

    CAS  Google Scholar 

  14. O. Degani, S. Gepstein, and C. G. Dosoretz, Appl. Biochem. Biotech., 102, 277 (2002).

    Article  Google Scholar 

  15. A. Khoddami, M. Morshed, and H. Tavani, Iran Polym. J., 10, 363 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wha Soon Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Song, W.S. Surface modification of polyester fabrics by enzyme treatment. Fibers Polym 11, 54–59 (2010). https://doi.org/10.1007/s12221-010-0054-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-010-0054-4

Keywords

Navigation