Skip to main content
Log in

Stability, Analytic Stability for Real Reductive Lie Groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We presented a systematic treatment of a Hilbert criterion for stability theory for an action of a real reductive group G on a real submanifold X of a Kähler manifold Z. More precisely, we suppose that the action of a compact Lie group U with Lie algebra \({\mathfrak {u}}\) extends holomorphically to an action of the complexified group \(U^\mathbb {C}\) and that the U-action on Z is Hamiltonian. If \(G\subset U^\mathbb {C}\) is compatible, there is a corresponding gradient map \(\mu _{\mathfrak {p}} : X\rightarrow {\mathfrak {p}}\), where \({\mathfrak {g}}= {\mathfrak {k}}\oplus {\mathfrak {p}}\) is a Cartan decomposition of the Lie algebra of G. The concept of energy complete action of G on X is introduced. For such actions, one can characterize stability, semistability and polystability of a point by a numerical criteria using a G-equivariant function called maximal weight. We also prove the classical Hilbert–Mumford criteria for semistability and polystability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biliotti, L., Ghigi, A.: Stability of measures on Kähler manifolds. Adv. Math. 317, 1108–1150 (2017)

    Article  MATH  Google Scholar 

  2. Biliotti, L., Windare, O.J.: Properties of gradient maps associated with action of real reductive group. arXiv:2106.13074

  3. Biliotti, L., Zedda, M.: Stability with respect to actions of real reductive Lie group. Ann. Math. Pura Appl. 196(1), 2185–2211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biliotti, L., Ghigi, A., Heinzner, P.: Polar orbitopes. Commun. Ann. Geom. 21(3), 1–28 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Borel, A., Ji, L.: Compactifications of symmetric and locally symmetric spaces. Theory & Applications. Mathematics, Birkhäuser Boston Inc., Boston (2006)

    MATH  Google Scholar 

  6. Bruasse, A., Teleman: Harder–Narasimhan and optimal destabilizing vectors in complex geometry. Ann. Inst. Fourier (Grenoble) 55(3), 1017–1053 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chevalley, C.: Theory of Lie Groups. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  8. Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Am. Math. Soc. 288(1), 125–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Georgulas V., Robbin J.W., Salamon D.A.: The moment–weight inequality and the Hilbert–Mumford criterion.https://people.math.ethz.ch/salamon/PREPRINTS/momentweight-book.pdf

  10. Heinzner, P.: Geometrical invariant theory on Stein Spaces. Math. Ann. 289, 631–662 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heinzner, P., Huckleberry, A.: Analytic Hilbert quotient. MSRI Publ. 37, 309–349 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Heinzner, P., Loose, F.: Reduction of complex Hamiltonian G-spaces. Geom. Funct. Anal. 4(3), 288–297 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heinzner, P., Schützdeller, P.: Convexity properties of gradient maps. Adv. Math. 225(3), 1119–1133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heinzner, P., Schwarz, G.W.: Cartan decomposition of the moment map. Math. Ann. 337, 197–232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heinzner, P., Stötzel, H.: Critical Points of the Square of the Momentum Map. Global Aspects of Complex Geometry, pp. 211–226. Springer, Berlin (2006)

    MATH  Google Scholar 

  16. Heinzner, P., Stötzel, H.: Semistable points with respect to real forms. Math. Ann. 338(1), 1–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heinzner, P., Hucleberry, A., Loose, F.: Kählerian extensions of the Symplectic reduction. J. Reine Angew. Math. 455, 288–297 (1994)

    MATH  Google Scholar 

  18. Heinzner, P., Schwarz, G.W., Stötzel, H.: Stratifications with respect to actions of real reductive groups. Compos. Math. 144(1), 163–185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Pure and Applied Mathematics, Academic Press Inc, New York (1978)

    MATH  Google Scholar 

  20. Hesselink, W.: Disungalirazions of varieties and nullforms. Invent. Math. 55, 141–163 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hohschild, G.: The Structure of Lie Groups. Holden-day, San Francisco (1965)

    Google Scholar 

  22. Kapovich, M., Leeb, B., Millson, J.: Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity. J. Differ. Geom. 81(2), 297–354 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirwan, F.: Cohomology of Quotiens in Symplectic and Algebraic Geometry. Princeton University Press, Princeton (1984)

    Google Scholar 

  24. Knapp, A.W.: Lie groups beyond an introduction. Progress in Mathematics, 2nd edn. Birkhäuser Boston Inc., Boston (2002)

    MATH  Google Scholar 

  25. Lübke, M., Teleman, A.: The Kobayashi–Hitchin Correspondence. Word Scientific, Geneva (1995)

    Book  MATH  Google Scholar 

  26. Lübke, M., Teleman, A.: The universal Kobayashi–Hitchin correspondence on Hermitian manifolds. Mem. AMS 183, 863 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1994)

    Google Scholar 

  28. Mundet i, R.I.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Mundet i, R.I.: Maximal weights in Kähler geometry: flag manifolds and tits distance (with an appendix by A. H. W. Schmitt). Contemp. Math. 522(10), 5169–5187 (2010)

    MATH  Google Scholar 

  30. Mundet i, R.I.: A Hilbert–Mumford criterion for polystability in Kaehler geometry. Trans. Am. Math. Soc. 362(10), 5169–5187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sjamaar, R.: Convexity properties of the momentum mapping re-examinated. Adv. Math. 138(1), 46–91 (1998)

  32. Teleman, A.: Symplectic stability, analytic stability in non-algebraic complex geometry. Int. J. Math. 15(2), 183–209 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiuxiong, C.: Space of Kähler metrics III—on the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175, 453–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Alessandro Ghigi and Peter Heinzner for interesting discussions. We would also like to thank the anonymous referee for carefully reading our paper and for giving such constructive comments which substantially helped improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Biliotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and holomorphic dynamics ” and “National Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA - INDAM).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biliotti, L., Windare, O.J. Stability, Analytic Stability for Real Reductive Lie Groups. J Geom Anal 33, 92 (2023). https://doi.org/10.1007/s12220-022-01146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01146-0

Keywords

Mathematics Subject Classification

Navigation