Skip to main content
Log in

Quantitative Stability for Anisotropic Nearly Umbilical Hypersurfaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove qualitative and quantitative stability of the following rigidity theorem: the only anisotropic totally umbilical closed hypersurface is the Wulff shape. Consider \(n \ge 2\), \(p\in (1, \, +\infty )\) and \(\Sigma \) an n-dimensional, closed hypersurface in \(\mathbb {R}^{n+1}\), which is the boundary of a convex, open set. We show that if the \(L^p\)-norm of the trace-free part of the anisotropic second fundamental form is small, then \(\Sigma \) must be \(W^{2, \, p}\)-close to the Wulff shape, with a quantitative estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Proposition 4.3 actually works only for \(1<p \le n\). However, the perimeter condition and the Hölder inequality ensure that the super-critical case implies an \(L^n\)-bound of \(\mathring{S}_F\).

  2. In the super-critical case, we can assume that up to extract a subsequence, every \(||{\mathring{S}^k_F}||_p\) is bounded by 1, hence removing the dependence on \(c_0\) for the qualitative argument.

References

  1. Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Mathematische Zeitschrift 185(3), 339–353 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. De Lellis, C., De Rosa, A., Ghiraldin, F.: A direct approach to the anisotropic Plateau problem. Accepted by Advances in Calculus of Variations. (2017). https://doi.org/10.1515/acv-2016-0057. arxiv: https://arxiv.org/abs/1602.08757

  3. De Lellis, C., Müller, S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differ. Geom. 69(1), 75–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Lellis, C., Müller, S.: A \(C^0\) estimate for nearly umbilical surfaces. Calc. Var. Part. Differ. Equ. 26(3), 283–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. De Lellis, C., Topping, P.: Almost-Schur lemma. Calc. Var. Part. Differ. Equ. 43(3–4), 347–354 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Delgadino, M.G., Maggi, F., Mihaila, C., Neumayer, R.: Bubbling with \(L^2\)-almost constant mean curvature and an Alexandrov-type theorem for crystals. arxiv:1705.10117 (2017)

  7. De Philippis, G., De Rosa, A., Ghiraldin, F.: A direct approach to Plateau’s problem in any codimension. Adv. Math. 288, 59–80 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Philippis, G., De Rosa, A., Ghiraldin, F.: Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies. Commun. Pure Appl. Math. 71(6), 1123–1148 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Philippis, G., De Rosa, A., Ghiraldin, F.: Existence results for minimizers of parametric elliptic functionals. arxiv:1704.07801 (2017)

  10. De Rosa, A.: Minimization of anisotropic energies in classes of rectifiable varifolds. SIAM J. Math. Anal. 50(1), 162–181 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Rosa, A., Gioffrè, S.: Absence of bubbling phenomena for non convex anisotropic nearly umbilical and quasi Einstein hypersurfaces. arxiv:1803.09118 (2018)

  12. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 224, second edition. Springer, Berlin (1983)

  14. Gioffrè, S.: Quantitative \(W^{2, \, p}\)-stability for almost Einstein hypersurfaces. (2017). arxiv:1703.01846

  15. Gioffrè, S.: A \(W^{2, \, p}\)-estimate for nearly umbilical hypersurfaces. arxiv:1612.08570 (2016)

  16. He, Y.J., Li, H.Z.: Integral formula of Minkowski type and new characterization of the Wulff shape. Acta Math. Sin. (Engl. Ser.) 24(4), 697–704 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics, vol 33. Springer, New York (1994). Corrected reprint of the 1976 original

  18. Koiso, M., Palmer, B.: Geometry and stability of surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 54(6), 1817–1852 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamm, T., Metzger, J.: Small surfaces of Willmore type in Riemannian manifolds. Int. Math. Res. Not. 2010(19), 3786–3813 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Lamm, T., Metzger, J., Schulze, F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350(1), 1–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Metzger, J.: Foliations of asymptotical ly flat 3-manifolds by 2-surfaces of prescribed mean curvature. J. Differ. Geom. 77(2), 201–236 (2007)

    Article  MATH  Google Scholar 

  22. Neumayer, R.: A strong form of the quantitative Wulff inequality. SIAM J. Math. Anal. 48(3), 1727–1772 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Perez, D.: On nearly umbilical surfaces. http://user.math.uzh.ch/delellis/uploads/media/Daniel.pdf (2011)

  24. Roberts, A.W., Varberg, D.E.: Another proof that convex functions are locally Lipschitz. Am. Math. Mon. 81, 1014–1016 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roth, J., Scheuer, J.: Pinching of the first eigenvalue for second order operators on hypersurfaces of the Euclidean space. Ann. Glob. Anal. Geom. 51(3), 287–304 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roth, J., Scheuer, J.: Explicit rigidity of almost-umbilical hypersurfaces. Asian J. Math. (2017)

  27. Scheuer, J.: Oscillation estimates for almost-umbilical closed hypersurfaces in Euclidean space. Bull. Aust. Math. Soc. 92(1), 133–144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

  29. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. IV, 3rd edn. Publish or Perish Inc., Huston (1999)

    MATH  Google Scholar 

  30. Taylor, J.E.: Crystalline variational problems. Bull. Am. Math. Soc. 84(4), 568–588 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

S.G. was supported by Project “ModCompShock” Innovation Horizon 2020.

Funding

Funding was provided by Courant Institute of Mathematical Sciences, New York University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio De Rosa.

Appendix A: Proof of Computational Propositions

Appendix A: Proof of Computational Propositions

In this section, we prove the computational propositions stated in Sects. 6 and 8. As in Sect. 6, we will differentiate the geometric quantities associated to \(\Sigma \) and \(\mathcal {W}\). In particular, we denote the normal and the second fundamental form of \(\Sigma \) by \(\nu ^\Sigma \) and \(h^\Sigma \), respectively, while we omit the dependence on \(\mathcal {W}\) for the same quantities of the Wulff shape.

Proof of Proposition 6.2

The closeness of u stated in (6.5) is trivial, so let us focus on the closeness of \(\nabla u\). We prove that if \(\varepsilon \) is small, there exists a constant \(C(\mathcal {W})\) such that u must satisfy

$$\begin{aligned} \nabla ^2 u \le C( \omega + \nabla u \otimes \nabla u ) \end{aligned}$$
(A.1)

in the sense of the quadratic forms. In order to prove (A.1), we compute the second fundamental form of \(\Sigma \). We firstly exhibit the exact expression for \(\nu ^\Sigma \). Let x be in \(\Sigma \), and let be a frame for \(T_x \mathcal {W}\). We compute the differential \(d\psi \) in these coordinates, obtaining

$$\begin{aligned} \nabla _i \psi = z_i + \nabla _i u \, \nu + u \nabla _i \nu . \end{aligned}$$
(A.2)

Now we search for a vector \( V = \nu + a^i z_i \) which satisfies the condition \(\langle V , \nabla _j \psi \rangle = 0\) for every \(j=1,\dots ,n\) and we will recover \(\nu ^\Sigma =\frac{V}{|V|}\). We compute

$$\begin{aligned} 0&= \langle \nu ^\Sigma , \, \nabla _j \psi \rangle = \langle \nu + a^i z_i , \, z_j + \nabla _j u \, \nu + u \nabla _j \nu \rangle \\&= \nabla _j u + (\omega + u h)^i_j a_i. \end{aligned}$$

Normalizing, we obtain the expression for \(\nu ^\Sigma \).

$$\begin{aligned} \nu ^\Sigma = \frac{\nu - \left( {\omega + u h}\right) ^{-1}[\nabla u]}{|{\nu - \left( {\omega + u h}\right) ^{-1}[\nabla u]}|}. \end{aligned}$$
(A.3)

Using the \(C^0\) smallness of u we obtain

$$\begin{aligned} \nu ^\Sigma = \frac{\nu - \nabla u}{\sqrt{1 + |{({{\mathrm{Id}}}+ u h)^{-1}[\nabla u]}|^2}} + \mathcal {R}, \end{aligned}$$
(A.4)

where \(\mathcal {R}\) is a combination of product of u and \(\nabla u\). We use this expression to compute \(h^\Sigma \).

$$\begin{aligned} h^\Sigma _{ij}&= \langle \nabla _i \nu ^\Sigma , \, \nabla _j \psi \rangle \nonumber \\&= \frac{\langle \nabla _i \nu + \nabla _i \nabla u, \, z_j + u \nabla _j \nu + \nabla _j u \nu \rangle + \langle \nabla _i \mathcal {R}, \, \nabla _j \psi \rangle }{\sqrt{1 + |{({{\mathrm{Id}}}+ u h)^{-1}[\nabla u]}|^2}} \nonumber \\&= \frac{h_{ij} - \nabla ^2_{ij} u + u h^2_{ij} - u \langle \nabla _i (\nabla u), \, \nabla _j \nu \rangle + h[\nabla u]_i \, \nabla _j u + \langle \nabla _i \mathcal {R}, \, \nabla _j \psi \rangle }{\sqrt{1 + |{({{\mathrm{Id}}}+ u h)^{-1}[\nabla u]}|^2} }. \end{aligned}$$
(A.5)

We notice that in (A.5) every element in \(\nabla \mathcal {R}\) must be either a product of \(\nabla u\) and \(\nabla u\) or a product of u and \(\nabla ^2 u\), and every element is controlled by constants depending only on \(\mathcal {W}\). Therefore, since u is small we can absorb the products of u and \(\nabla ^2 u\) into \(\nabla ^2 u\). Since \(\Sigma \) is convex, we know that \(h^\Sigma \ge 0\), we easily obtain (A.1). We show how this inequality leads to the result. Consider a point \(x_{0} \in \mathcal {W}\), and a unit vector \(\xi \) in \( T_x \mathcal {W}\) which satisfies \(\left( { \nabla u(x_{0}), \, \xi }\right) = - ||{\nabla u}||_{C^0}\). Setting \(x_\tau = \exp _{x_{0}}(\tau \xi )\) the lemma follows by the simple equality

$$\begin{aligned} u(x_\tau ) - u(x_{0}) = \left( {\nabla u(x_{0}), \, \tau \xi }\right) + \int _{0}^1 t \int _{0}^1 \nabla ^2 u (\gamma (st))[\dot{\gamma }(st), \, \dot{\gamma }(st)] \, dsdt, \end{aligned}$$

where \(\gamma :[0, \, 1] \longrightarrow \mathcal {W}\) is the geodesic which connects \(x_{0}\) and \(x_\tau \). Applying (A.1) we find

$$\begin{aligned} u(x_\tau ) - u(x_{0})\le & {} \left( {\nabla u(x_{0}), \, \tau \xi }\right) + C\frac{\tau ^2}{2} \left( {1 + ||{\nabla u}||^2_{C^0}}\right) \\= & {} - \tau ||{\nabla u}||_{C^0} + C\frac{\tau ^2}{2} \left( {1 + ||{\nabla u}||^2_{C^0}}\right) . \end{aligned}$$

Finally, for every \(\tau \) smaller than the injectivity radius, we obtain the inequality

$$\begin{aligned} ||{\nabla u}||_{C^0} \le \frac{{{\mathrm{osc}}}(u)}{\tau } + \frac{C\tau }{2} \left( {1 + ||{\nabla u}||^2_{C^0}}\right) . \end{aligned}$$

Choosing \(\tau = \sqrt{2C {{\mathrm{osc}}}(u) \, (1 + ||{\nabla u}||^2_{C^0})}\) we obtain the result for \({{\mathrm{osc}}}(u)\) small. \(\square \)

Proof of Proposition 6.3

The proof follows by linearising the metric g of \(\Sigma \), its normal \(\nu ^\Sigma \) and its second fundamental form \(h^\Sigma \). Again, we consider \(x \in \Sigma \) and to be a frame for \(T_x \mathcal {W}\). We use the differential  A.2 to linearize the metric g.

$$\begin{aligned} g_{ij}&= \langle \nabla _i \psi , \, \nabla _j \psi \rangle = \langle z_i + \nabla _i u \, \nu + u \nabla _i \nu , \, z_j + \nabla _j u \, \nu + u \nabla _j \nu \rangle \\&= \omega _{ij} + 2 u h_{ij} + \nabla _i u \, \nabla _j u + u^2 \underbrace{\langle \nabla _i \nu , \, \nabla _j \nu \rangle }_{= h^k_i h_{kj}} \end{aligned}$$

and we obtain

$$\begin{aligned} |{g_{ij} - \omega _{ij} - 2u h_{ij}}| \le C \sqrt{\varepsilon } \left( {|{u}| + |{\nabla u}|}\right) . \end{aligned}$$
(A.6)

As an easy consequence of (A.6) we obtain the linearisation of the inverse

$$\begin{aligned} |{g^{ij} - \omega ^{ij} - 2u h^{ij}}| \le C \sqrt{\varepsilon } \left( {|{u}| + |{\nabla u}|}\right) \end{aligned}$$
(A.7)

and its determinant

$$\begin{aligned} |{\det g - \det \omega - 2 H u}| \le C \sqrt{\varepsilon } \left( { |{u}| + |{\nabla u}|}\right) . \end{aligned}$$
(A.8)

The linearization of \(\nu ^\Sigma \) follows by (A.3). Indeed we find

$$\begin{aligned} \nu ^\Sigma&= \frac{\nu - \left( {\omega + u h}\right) ^{-1}[\nabla u]}{|{\nu - \left( {\omega + u h}\right) ^{-1}[\nabla u]}|} = \nu - \nabla u + \mathcal {R}, \end{aligned}$$

where \(\mathcal {R}\) is defined as a combination of product of u and \(\nabla u\). We obtain

$$\begin{aligned} |{\nu ^\Sigma - \nu + \nabla u}| \le C \sqrt{\varepsilon } \left( {|{u}| + |{\nabla u}|}\right) . \end{aligned}$$
(A.9)

Now we linearize \(h^\Sigma \). We write

$$\begin{aligned} \nu ^{\Sigma } = \nu - \nabla u + \mathcal {R}, \end{aligned}$$

where \(\mathcal {R}\) is a combination of products of u and \(\nabla u\), we obtain

$$\begin{aligned} h^{\Sigma }_{ij} = \langle \nabla _i \psi , \, \nabla _j \nu ^\Sigma \rangle = \langle z_i + \nabla _i u \, \nu + u \nabla _i, \, \nabla _j \left( {\nu + \nabla u + \mathcal {R}}\right) \rangle \end{aligned}$$

and we obtain

$$\begin{aligned} |{h^\Sigma - h + \nabla ^2 u - h^2 u}| \le C \sqrt{\varepsilon } \left( {|{u}| + |{\nabla u}| + |{\nabla ^2 u }|}\right) . \end{aligned}$$
(A.10)

We prove now (6.7). Let us denote by \(\mathcal {R}\) a quantity that can be approximate as

$$\begin{aligned} |{\mathcal {R}}| \le C \left( { |{u}| + |{\nabla u}| + |{\nabla ^2 u}| }\right) . \end{aligned}$$

We obtain

$$\begin{aligned} S_F(\Sigma )&= \left. A_F \right| _{\nu ^\Sigma } h^\Sigma = \left( { \left. A_F \right| _{\nu } - \left. D A_F \right| _{\nu }[\nabla u] }\right) \left( {h - \nabla ^2 u - h^2 u}\right) + \mathcal {R}\\&= \underbrace{\left. A_F \right| _{\nu } h }_{ = S_F(\mathcal {W}) = {{\mathrm{Id}}}} - \underbrace{ \left. D A_F \right| _{\nu }[\nabla u] - A_F \nabla ^2 u }_{\nabla (A_F \nabla u)} - \left. A_F \right| _{\nu } - \underbrace{\left. A_F \right| _{\nu } h^2 u}_{=h u} + \mathcal {R}\end{aligned}$$

and we obtain our estimate. Now we deal with (6.8). Tracking (6.7) we obtain

$$\begin{aligned} |{H_F(\Sigma ) - n + L[u]}| \le C \left( { |{u}| + |{\nabla u}| + |{\nabla ^2 u}| }\right) . \end{aligned}$$

Integrating, we easily obtain

$$\begin{aligned} \left| \overline{H_F(\Sigma )} - n + \fint _\mathcal {W}H u \, dV\right| \le C \sqrt{\varepsilon } \left\| {u}\right\| _{W^{2, \, p}(\mathcal {W})}. \end{aligned}$$
(A.11)

We just have to prove that the integral quantity \(\int H u\) is negligible. Here we need the perimeter condition. Indeed, using (A.8) we obtain

$$\begin{aligned} \mathcal {P}(\Sigma ) = \mathcal {P}(\mathcal {W}) + \int _\mathcal {W}H u \, dV + \mathcal {R}, \end{aligned}$$
(A.12)

where \(\mathcal {R}\) is again a quantity which can easily be approximated. From (A.12) and the perimeter condition we obtain

$$\begin{aligned} \left| \fint _\mathcal {W}H u \, dV \right| \le C(n,p,F) \sqrt{\varepsilon } ||{u}||_{W^{2, \, p}(\mathcal {W})} \end{aligned}$$

and this concludes the proof. \(\square \)

Proof of Proposition 8.1

Let \(c \in \mathbb {R}^{n+1}\) be given. We easily obtain the estimate

$$\begin{aligned} ||{u - \varphi _u}||_{W^{2, \, p}}&\le ||{u - \varphi _c}||_{W^{2, \, p}} + ||{\varphi _c - \varphi _u}||_{W^{2, \, p}} \le ||{u - \varphi _c}||_{W^{2, \, p}}\\&\quad + \left\| {\sum _{i=1}^{n+1} \langle u - \varphi _u, \, \varphi _i \rangle _{L^2} \varphi _i }\right\| _{W^{2, \, p}} \\&\le ||{u - \varphi _c}||_{W^{2, \, p}} + \sum _{i=1}^{n+1} \left\| { \langle u - \varphi _c, \, \varphi _i \rangle _{L^2} \varphi _i }\right\| _{W^{2, \, p}} \\&\le ||{u - \varphi _c}||_{W^{2, \, p}} + ||{u - \varphi _c}||_{L^1} \sum _{i=1}^{n+1} ||{\varphi _i}||_{L^1} ||{\varphi _i}||_{W^{2, \, p}}\\&\le C(n,p,F) ||{u - \varphi _u}||_{W^{2, \, p}} \end{aligned}$$

and since c is arbitrary, we obtain the thesis. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rosa, A., Gioffrè, S. Quantitative Stability for Anisotropic Nearly Umbilical Hypersurfaces. J Geom Anal 29, 2318–2346 (2019). https://doi.org/10.1007/s12220-018-0079-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0079-2

Keywords

Mathematics Subject Classification

Navigation