Skip to main content
Log in

BMO Solvability and \(A_{\infty }\) Condition of the Elliptic Measures in Uniform Domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider the Dirichlet boundary value problem for divergence form elliptic operators with bounded measurable coefficients. We prove that for uniform domains with Ahlfors regular boundary, the BMO solvability of such problems is equivalent to a quantitative absolute continuity of the elliptic measure with respect to the surface measure, i.e., \(\omega _L\in A_{\infty }(\sigma )\). This generalizes a previous result on Lipschitz domains by Dindos, Kenig, and Pipher (see Dindos et al. in J Geom Anal 21:78–95, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikawa, H.: Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions. Math. Ann. 312, 289–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aikawa, H.: Boundary Harnack principle and Martin boundary for a uniform domain. J. Math. Soc. Jpn. 53(1), 119–145 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aikawa, H.: Potential-theoretic characterizations of nonsmooth domains. Bull. Lond. Math. Soc. 36, 469–482 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ancona, A.: On strong barriers and an inequality of Hardy for domains in \(\mathbb{R}^n\). J. Lond. Math. Soc. 34, 274–290 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azzam, J., Hofmann, S., Martell, J.M., Mayboroda, S., Mourgoglou, M., Tolsa, X., Volberg, A.: Rectifiability of harmonic measure. Preprint, arXiv:1509.06294

  6. Azzam, J., Hofmann, S., Martell, J.M., Nyström, K., Toro, T.: A new characterization of chord-arc domains. arXiv:1406.2743, to appear in J. Eur. Math. Soc

  7. Carleson, L.: On the existence of boundary values of harmonic functions of several variables. Ark. Math. 4, 339–393 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Fabes, E., Mortola, S., Salsa, S.: Boundary behavior of non-negative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30, 621–640 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coifman, R.R., Rochberg, R.: Another characterization of BMO. Proc. Am. Math. Soc. 79, 249–254 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlberg, B.E.J.: On estimates for harmonic measure. Arch. Ration. Mech. Anal. 65, 272–288 (1977)

    Article  MathSciNet  Google Scholar 

  11. Dahlberg, B.E.J.: On the absolute continuity of elliptic measures. Am. J. Math. 108(5), 1119–1138 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. David, G., Jerison, D.: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana Univ. Math. J. 39(3), 831–845 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dindos, M., Kenig, C., Pipher, J.: BMO solvability and the \(A_{\infty }\) condition for elliptic operators. J. Geom. Anal. 21(1), 78–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Fabes, E., Kenig, C., Neri, U.: Carleson measures, \(H^1\) duality and weighted BMO in non-smooth domains. Indiana J. Math. 30(4), 547–581 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fabes, E., Neri, U.: Dirichlet problem in Lipschitz domains with BMO data. Proc. Am. Math. Soc. 78, 33–39 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fefferman, R.: A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator. J. AMS, vol. 2, Number 1, 134, 65–124 (1989)

  18. Fefferman, R., Kenig, C., Pipher, J.: The theory of weights and the Dirichlet problem for elliptic equations. Ann. Math. Second Ser. 134(1), 65–124 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fabes, E., Neri, U.: Dirichlet problem in Lipschitz domains with BMO data. Proc. Am. Math. Soc. 78, 165–186 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  23. Hofmann, S., Le, P.: BMO solvability and absolute continuity of harmonic measure. arXiv:1607.00418v1

  24. Hofmann, S., Martell, J.M.: Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in \(L^p\). Ann. Sci. Ecole Norm. Sup. 47(3), 577–654 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hofmann, S., Martell, J.M., Mayboroda, S.: Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions. To appear in Duke Math. J. arXiv:1408.1447

  26. Hofmann, S., Martell, J.M., Uriarte-Tuero, I.: Uniform rectifiability and harmonic measure II: Poisson kernels in \(L^p\) imply uniform rectifiability. To appear in Duke Math. J. arXiv:1202.3860v2

  27. Hofmann, S., Martell, J.M., Toro, T.: Elliptic Operators on Non-smooth Domains. Book in preparation

  28. Hunt, R., Wheeden, R.: Positive harmonic functions on Lipschitz domains. Trans. Am. Math. Soc. 147, 507–527 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, P.W.: A geometric localization theorem. Adv. Math. 46, 71–79 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jerison, D., Kenig, C.: Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46, 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kenig, C.: Harmonic analysis techniques for second order elliptic boundary value problems. In: Proceedings of the CBMS regional conference series in mathematics, 83. AMS Providence, RI (1994)

  32. Kenig, C., Kirchheim, B., Pipher, J., Toro, T.: Square functions and the \(A_{\infty }\) property of elliptic measures. J. Geom. Anal. 26, 2383 (2016). doi:10.1007/s12220-015-9630-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Kenig, C., Koch, H., Pipher, J., Toro, T.: A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations. Adv. Math. 153(2), 231–298 (2000). doi:10.1006/aima.1999.1899

    Article  MathSciNet  MATH  Google Scholar 

  34. Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Annali della Scuola Normale Superiore di Pisa—Classe di Scienze 17(1–2), 43–77 (1963)

    MathSciNet  MATH  Google Scholar 

  35. Milakis, E., Pipher, J., Toro, T.: Harmonic analysis on chord arc domain. J. Geom. Anal. 23, 2091–2157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Semmes, S.: Analysis vs. geometry on a class of rectifiable hypersurfaces in \({\mathbb{R}}^{n}\). Indiana Univ. Math. J. 39(4), 10051035 (1990)

    MathSciNet  Google Scholar 

  37. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1st edn. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

The author was partially supported by NSF DMS Grants 1361823 and 1500098. The author wants to thank her advisor Prof. Tatiana Toro for introducing her to this area and the enormous support given by her during the work on this paper. The author also wants to thank Prof. Hart Smith for his support, and thank the referee for the careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihui Zhao.

Appendices

Appendix 1: Proof of Lemma 5.3: Properties of \(f_{\epsilon }\)

The function \(f_{\epsilon }\) as in (5.27) is well defined because

$$\begin{aligned} \int _{y\in \partial \Omega } \varphi _{\epsilon }(x-y)\mathrm{d}\sigma (y) \ge \frac{1}{\epsilon ^{n-1}} \int _{y\in \Delta \left( x, \frac{\epsilon }{2}\right) } \mathrm{d}\sigma (y) \ge C_1 > 0. \end{aligned}$$
(7.1)

We also have

$$\begin{aligned} \int _{y\in \partial \Omega } \varphi _{\epsilon }(x-y)\mathrm{d}\sigma (y) \le \frac{1}{\epsilon ^{n-1}} \int _{y\in \Delta (x, \epsilon )} \mathrm{d}\sigma (y) \le C_2 . \end{aligned}$$
(7.2)

The constants \(C_1\) and \(C_2\) are independent of \(\epsilon \).

Proof of (1)

For any surface ball \(\Delta _0=\Delta (x_0, r_0)\), we denote \(\Delta _0^{\epsilon } = \Delta (x_0,r_0+\epsilon )\). Since f is supported in \(2\Delta \), each \(f_{\epsilon }\) is supported in \(\left( 2\Delta \right) ^{\epsilon }\). Thus, all \(f_{\epsilon }\)’s are supported in \(3\Delta \) if \(\epsilon < r\), the radius of \(\Delta \). \(\square \)

Note that

$$\begin{aligned}&\left| \int _{\partial \Omega } \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y) -\int _{\partial \Omega } \varphi _{\epsilon }(\tilde{x}-y) \mathrm{d}\sigma (y) \right| \nonumber \\&\quad = \left| \int _{\partial \Omega } \int _0^1 \frac{d}{ds} \varphi _{\epsilon }((1-s)\tilde{x}+s x-y) ds \mathrm{d}\sigma (y) \right| \nonumber \\&\quad \le \frac{|x-\tilde{x}|}{\epsilon ^n} \int _0^1 \int _{y\in \partial \Omega } \left| \nabla \varphi \left( \dfrac{(1-s)\tilde{x}+s x-y}{\epsilon } \right) \right| \mathrm{d}\sigma (y) ds. \end{aligned}$$
(7.3)

Since \(\Vert \nabla \varphi \Vert _{L^{\infty }} \le C\), for any \(w\in \mathbb {R}^n\) we have

$$\begin{aligned} \int _{y\in \partial \Omega } \left| \nabla \varphi \left( \frac{w-y}{\epsilon }\right) \right| \mathrm{d}\sigma (y) \le C \sigma \left( B(w,\epsilon )\cap \partial \Omega \right) \le C\epsilon ^{n-1}. \end{aligned}$$
(7.4)

Combining (7.3) and (7.4),

$$\begin{aligned} \left| \int _{\partial \Omega } \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y) -\int _{\partial \Omega } \varphi _{\epsilon }(\tilde{x}-y) \mathrm{d}\sigma (y) \right| \le C\frac{|x-\tilde{x}|}{\epsilon }, \end{aligned}$$

so for any \(\epsilon \) fixed, the map \(x\in \partial \Omega \mapsto \int _{\partial \Omega } \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y)\) is continuous. Since \(0\le f \le 1\), we can prove similarly \(\int _{\partial \Omega } f(y) \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y)\) is also continuous. Thus, \(f_{\epsilon }(x)\) is continuous.

Proof of (2)

Fix \(\epsilon >0\). Let \(\widetilde{\Delta }=\Delta (x_0, r_0)\) be an arbitrary surface ball. Let \(\lambda \) be a real number to be determined later. We consider two cases. \(\square \)

Case 1 If \(r_0 \ge \epsilon /2\), by the definition (5.27) and the estimates (7.1), (7.2),

$$\begin{aligned}&\int _{\widetilde{\Delta }} \left| f_{\epsilon }(x) -\lambda \right| \mathrm{d}\sigma (x) \\&\quad \le \frac{1}{C_1} \int _{\widetilde{\Delta }}\left| \int _{\partial \Omega } f(y) \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y) - \lambda \int _{\partial \Omega } \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y) \right| \mathrm{d}\sigma (x) \\&\quad \le \widetilde{C}_1 \int _{x\in \widetilde{\Delta }} \int _{y\in \Delta (x,\epsilon ) } |f(y) -\lambda | \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y) \mathrm{d}\sigma (x) \\&\quad \le \widetilde{C}_1 \int _{y\in \widetilde{\Delta }^{\epsilon }} |f(y) -\lambda | \int _{x\in \partial \Omega } \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (x) \mathrm{d}\sigma (y) \\&\quad \le \widetilde{C}_1 C_2 \int _{y\in \widetilde{\Delta }^{\epsilon }} |f(y) -\lambda | \mathrm{d}\sigma (y) \\&\quad \le C' \sigma (\widetilde{\Delta }^{\epsilon }) \Vert f\Vert _{\mathrm{BMO}(\sigma )} . \end{aligned}$$

The last inequality is true if we choose \(\lambda = \lambda (\widetilde{\Delta }, \epsilon ) \) be the constant satisfying . Thus,

Case 2 If \(r_0<\epsilon /2\), by the definition (5.27) and the estimate (7.1),

$$\begin{aligned} \int _{\widetilde{\Delta }} \left| f_{\epsilon }(x) -\lambda \right| \mathrm{d}\sigma (x)&\le \widetilde{C}_1 \int _{x\in \widetilde{\Delta }} \int _{y\in \Delta (x,\epsilon ) } |f(y) -\lambda | \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (y) \mathrm{d}\sigma (x) \nonumber \\&\le \widetilde{C}_1 \iint _{y\in \widetilde{\Delta }^{\epsilon }} |f(y) -\lambda | \int _{x\in \widetilde{\Delta }} \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (x) \mathrm{d}\sigma (y). \end{aligned}$$
(7.5)

Note

$$\begin{aligned} \int _{x\in \widetilde{\Delta }} \varphi _{\epsilon }(x-y) \mathrm{d}\sigma (x) \le \frac{1}{\epsilon ^{n-1}} \int _{x\in \widetilde{\Delta }} \mathrm{d}\sigma (x)=\frac{\sigma (\widetilde{\Delta })}{\epsilon ^{n-1}} , \end{aligned}$$

it follows from (7.5) that

We have proved the following: for any \(\epsilon \) and any surface ball \(\widetilde{\Delta }\), one can find a constant \(\lambda =\lambda (\widetilde{\Delta }, \epsilon )\) such that . The constant C does not depend on either \(\epsilon \) or \(\widetilde{\Delta }\), therefore, \(\Vert f_{\epsilon }\Vert _{\mathrm{BMO}(\sigma )} \le C\Vert f\Vert _{\mathrm{BMO}(\sigma )}\) for all \(\epsilon \).

Proof of (3)

Fix \(x\in \partial \Omega \). If \(f(x)=0\), then obviously \(f(x) \le \liminf _{\epsilon \rightarrow 0} f_{\epsilon }(x)\). For any arbitrary \(\lambda >0\) such that \(\lambda < f(x)\), there exists \(\epsilon _0>0\) such that \(f(x) > \lambda + \epsilon _0\). It means

$$\begin{aligned} \sup _{\Delta '\ni x} \frac{\sigma (E\cap \Delta ')}{\sigma (\Delta ')} = M_{\sigma }\chi _E(x) > e^{\frac{\lambda + \epsilon _0 - 1}{\delta }}. \end{aligned}$$

In particular, there is some surface ball \(\Delta ' \ni x\) such that

$$\begin{aligned} \frac{\sigma (E\cap \Delta ')}{\sigma (\Delta ')} > e^{\frac{\lambda + \epsilon _0 - 1}{\delta }}. \end{aligned}$$

Then for any point \(y\in \Delta '\), we also have \(M_{\sigma }\chi _E(y) > \exp {(\lambda +\epsilon _0-1)/\delta }\), and thus \(f(y) > \lambda + \epsilon _0\). Consider all \(f_{\epsilon }\) with \(\epsilon < {{\mathrm{dist}}}(x, \partial \Omega {\setminus }\Delta ')\), we have \(\Delta (x,\epsilon )\subset \Delta '\), hence

$$\begin{aligned} f_{\epsilon }(x)&= \frac{ \int _{y\in \Delta (x,\epsilon )} f(y) \varphi _{\epsilon } (x-y) \mathrm{d}\sigma (y)}{\int _{y\in \Delta (x,\epsilon )} \varphi _{\epsilon }(x-y)\mathrm{d}\sigma (y)} \\&\ge (\lambda +\epsilon _0) \frac{ \int _{y\in \Delta (x,\epsilon )} \varphi _{\epsilon } (x-y) \mathrm{d}\sigma (y)}{\int _{y\in \Delta (x,\epsilon )} \varphi _{\epsilon }(x-y)\mathrm{d}\sigma (y)} = \lambda + \epsilon _0. \end{aligned}$$

Therefore, \(\liminf _{\epsilon \rightarrow 0} f_{\epsilon }(x) > \lambda \) for all \(\lambda < f(x)\). Thus, \(\liminf _{\epsilon \rightarrow 0} f_{\epsilon }(x) \ge f(x)\). \(\square \)

Appendix 2: Properties of the Truncated Square Function

1.1 Proof of Lemma 6.4

Assume \(Q\in \partial \Omega \) satisfies \(S^2_r u(Q) = \iint _{\Gamma _r(Q)} |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X > \lambda ^2\) and is finite, then there exists \(\eta <r\) such that

$$\begin{aligned} \iint _{\Gamma _r(Q){\setminus }B(Q,\eta ) } |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X > \left( \frac{ S_r u(Q) + \lambda }{2}\right) ^2. \end{aligned}$$

Fix \(\eta \), we claim there exists \(\epsilon >0\) such that \(S_r u(P)>\lambda \) for any \(P\in B(Q,\epsilon \eta )\cap \partial \Omega \). In fact,

$$\begin{aligned}&\left| \iint _{\Gamma _r(Q){\setminus }B(Q,\eta ) } |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X - \iint _{\Gamma _r(P){\setminus }B(P,\eta ) } |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X\right| \nonumber \\&\quad \le \iint _{D} |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X \end{aligned}$$
(8.1)

where D is the set difference between \(\Gamma _r(Q){\setminus }B(Q,\eta ) \) and \(\Gamma _r(P){\setminus }B(P,\eta ) \).

Assume \(X\in \Gamma _r(Q){\setminus }B(Q,\eta ) \), then \(|X-Q|\le \alpha \delta (X)\) and \(\eta \le |X-Q|<r\). In particular, \(\eta \le \alpha \delta (X)\). If in addition \(X\notin \Gamma _r(P){\setminus }B(P,\eta ) \) for some \(P \in B(Q,\epsilon \eta )\), then X falls in one of the following three categories:

  • \(|X-P|< \eta \), then \(|X-Q|\le |X-P|+|P-Q| <(1+\epsilon )\eta \), in particular \(\eta \le |X-Q| <(1+\epsilon )\eta \);

  • \(|X-P|\ge r\), then \(|X-Q|\ge |X-P|-|P-Q| > r-\epsilon \eta \), in particular \(r-\epsilon \eta<|X-Q|<r\);

  • \(|X-P|> \alpha \delta (X)\), then \(|X-Q|\ge |X-P|-|P-Q|> (1-\epsilon ) \alpha \delta (X)\), in particular \((1-\epsilon ) \alpha \delta (X) < |X-Q| \le \alpha \delta (X)\).

Similarly, the points in \(\left( \Gamma _r(P){\setminus }B(P,\eta )\right) {\setminus }\left( \Gamma _r(Q){\setminus }B(Q,\eta ) \right) \) also fall in three categories, just with Q replaced by P. Therefore, D, the set difference between \(\left( \Gamma _r(Q){\setminus }B(Q,\eta )\right) {\setminus }\left( \Gamma _r(P){\setminus }B(P,\eta ) \right) \) and \(\left( \Gamma _r(P){\setminus }B(P,\eta )\right) {\setminus }\left( \Gamma _r(Q){\setminus }B(Q,\eta ) \right) \), is contained in the union of three sets (corresponding to the above three cases):

$$\begin{aligned} V_1= & {} \big \{X\in \Omega : (1-\epsilon )\eta< |X-Q|<(1+2\epsilon )\eta , ~\delta (X) \ge \eta /\alpha \big \}\\ V_2= & {} \big \{X\in \Omega : r-2\epsilon \eta< |X-Q|< r+\epsilon \eta , ~\delta (X) \ge \eta /\alpha \big \}\\ V_3= & {} \big \{X\in \Omega :(1-2\epsilon ) \alpha \delta (X) < |X-Q| \le (1+\epsilon )\alpha \delta (X), ~\delta (X) \ge \eta /\alpha \big \}. \end{aligned}$$

Since \(\delta (X) \ge \eta /\alpha \) in D,

$$\begin{aligned} \iint _{D} |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X \le \left( \frac{\alpha }{\eta }\right) ^{n} \iint _{V_1\cup V_2 \cup V_3} |\nabla u|^2 \delta (X)^2 \mathrm{d}X. \end{aligned}$$
(8.2)

Note that \(u\in W^{1,2}(\Omega )\), we have

$$\begin{aligned} \iint _{\Omega } |\nabla u|^2 \delta (X)^2 \mathrm{d}X \le {{\mathrm{\,diam\,}}}(\Omega )^2 \iint _{\Omega } |\nabla u|^2 \mathrm{d}X <\infty . \end{aligned}$$

Hence, the integral \( \iint _{V_1\cup V_2 \cup V_3} |\nabla u|^2 \delta (X)^2 \mathrm{d}X\) is small as long as the Lebesgue measures of \(V_1\), \(V_2\) and \(V_3\) are small enough. Both \(V_1\) and \(V_2\) are contained in annuli of radius \(3\epsilon \eta \), so their Lebesgue measures are small if we choose \(\epsilon \) small enough (depending on \(\eta \)). Rewrite \(V_3\) as

$$\begin{aligned} V_3 = \bigg \{X\in \Omega : \frac{1}{ (1+\epsilon ) \alpha }< \frac{\delta (X)}{|X-Q|} \le \frac{1}{(1-2\epsilon )\alpha }, ~ \delta (X) \ge \frac{\eta }{\alpha }\bigg \}. \end{aligned}$$

Away from Q, say in \(\Omega {\setminus }B(Q,\eta /2)\), the function \(F(X) = \delta (X)/|X-Q|\) is Lipschitz, and \(0\le F\le 1\). Choose \(\epsilon <1/4\), then for any \(X\in V_3\), \(|X-Q|\ge (1-2\epsilon )\alpha \delta (X) \ge \eta /2\). So \(V_3\subset \Omega {\setminus }B(Q,\eta /2)\), and thus F is Lipschitz on \(V_3\). By the coarea formula,

$$\begin{aligned} \mathcal {H}^n(V_3) = \int _{\frac{1}{(1+\epsilon )\alpha } }^{\frac{1}{(1-2\epsilon )\alpha }} \int _{F^{-1}(t)} \frac{1}{JF} \chi _{V_3} \mathrm{d}\mathcal {H}^{n-1} \mathrm{d}t. \end{aligned}$$
(8.3)

On the other hand,

$$\begin{aligned} \int _{0}^1 \int _{F^{-1}(t)} \frac{1}{JF} \chi _{V_3} \mathrm{d}\mathcal {H}^{n-1} \mathrm{d}t&\le \int _{0}^1 \int _{F^{-1}(t)} \frac{1}{JF} \chi _{\Omega {\setminus }B(Q,\eta /2) } \mathrm{d}\mathcal {H}^{n-1} \mathrm{d}t \\&=\mathcal {H}^n\big (\Omega {\setminus }B(Q,\eta /2) \big ) \end{aligned}$$

is finite. Therefore, by (8.3), we may choose \(\epsilon \) small enough (depending on \(\alpha \)) such that \(\mathcal {H}^n(V_3)\) is small, which in turn implies \(\iint _{V_3} |\nabla u|^2 \delta (X)^2 \mathrm{d}X \) is small. To sum up, we have shown that one can choose \(\epsilon = \epsilon (\delta ,\alpha ,\eta ,r)\) small enough such that

$$\begin{aligned} \left( \frac{\alpha }{\eta }\right) ^{n} \iint _{V_1\cup V_2 \cup V_3} |\nabla u|^2 \delta (X)^2 \mathrm{d}X< \delta < \left( \dfrac{S_r u(Q) + \lambda }{2} \right) ^2 -\lambda ^2. \end{aligned}$$

Therefore, we conclude from (8.1) and (8.2) that

$$\begin{aligned}&\iint _{\Gamma _r(P){\setminus }B(P,\eta ) } |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X \\&\quad \ge \iint _{\Gamma _r(Q){\setminus }B(Q,\eta ) } |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X - \iint _{D } |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X\\&\quad> \left( \frac{ S_r u(Q) + \lambda }{2}\right) ^2 - \delta \\&\quad >\lambda ^2. \end{aligned}$$

Hence, \(S_r u(P) \ge \left( \iint _{\Gamma _r(P){\setminus }B(P,\eta ) } |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X \right) ^{1/2} >\lambda \), for all \(P\in B(Q,\epsilon \eta )\cap \partial \Omega \). This finishes the proof that \(\big \{Q\in \partial \Omega : S_r u(Q)>\lambda \big \}\) is open in \(\partial \Omega \). \(\square \)

1.2 Proof of Lemma 6.5

We prove the estimate by duality: let r be the conjugate of q / 2, namely \(1/r+2/q = 1\), then

$$\begin{aligned} \left( \int _{\Delta } |S_r^{\overline{\alpha }} u(Q) |^q \mathrm{d}\sigma (Q)\right) ^{2/q} = \sup \left\{ \int _{\Delta } |S_r^{\overline{\alpha }}u(Q)|^2 \psi (Q) \mathrm{d}\sigma (Q): \Vert \psi \Vert _{L^r(\Delta )} = 1\right\} . \end{aligned}$$
(8.4)

Recall \(\Delta =\Delta (Q_0,r)\). Extending \(\psi \) to all of \(\partial \Omega \) by setting it to zero outside of \(\Delta \). For any X, let \(Q_X\in \partial \Omega \) be a boundary point such that \(|X-Q_X| = \delta (X)\). By Fubini’s theorem,

$$\begin{aligned}&\int _{\Delta } |S_r^{\overline{\alpha }}u(Q)|^2 \psi (Q) \mathrm{d}\sigma (Q) \nonumber \\&\quad = \int _{\Delta } \left( \iint _{\Gamma ^{\overline{\alpha }}_r(Q)} |\nabla u|^2 \delta (X)^{2-n} \mathrm{d}X \right) \psi (Q) \mathrm{d}\sigma (Q) \nonumber \\&\quad \le \iint _{B(Q_0,2r)\cap \Omega } |\nabla u|^2 \delta (X)^{2-n} \int _{|Q-Q_X|\le (\overline{\alpha }+1)\delta (X)} \psi (Q) \mathrm{d}\sigma (Q) \mathrm{d}X \nonumber \\&\quad \lesssim \iint _{B(Q_0,2r)\cap \Omega } |\nabla u|^2 \delta (X) A_{(\overline{\alpha }+1)\delta (X)}\psi (Q_X) \mathrm{d}X, \end{aligned}$$
(8.5)

where \(A_{s}\psi (Q)\) is defined as \(A_{s}\psi (Q) = \frac{1}{s^{n-1}} \int _{\Delta (Q,s)} \psi (P) \mathrm{d}\sigma (P)\). Let \(\beta >1\), simply calculations show that

$$\begin{aligned}&A_{s} \left( A_{\beta s} \psi \right) (Q) \\&\quad = \frac{1}{s^{n-1}} \int _{\Delta (Q, s)} \left( \frac{1}{(\beta s)^{n-1}} \int _{\Delta (P,\beta s)} \psi (P') \mathrm{d}\sigma (P') \right) \mathrm{d}\sigma (P) \\&\quad \ge \frac{1}{s^{n-1}} \int _{\Delta (Q, s)} \left( \frac{1}{(\beta s)^{n-1}} \int _{\Delta (Q,(\beta -1)s)} \psi (P') \mathrm{d}\sigma (P') \right) \mathrm{d}\sigma (P) \\&\quad \gtrsim \left( \frac{(\beta -1)s}{\beta s}\right) ^{n-1} A_{(\beta -1)s} \psi (Q). \end{aligned}$$

Let \(s=(\alpha -1) \delta (X)\), \(\beta -1=\left( \overline{\alpha }+1\right) /\left( \alpha -1\right) \), then

$$\begin{aligned} A_{(\overline{\alpha }+1)\delta (X)}\psi (Q) \lesssim _{\alpha ,\overline{\alpha }} A_{(\alpha -1)\delta (X)}\left( A_{\beta s}\psi \right) (Q) \lesssim A_{(\alpha -1) \delta (X)}M\psi (Q). \end{aligned}$$

For the last inequality, we use \(|A_{\beta s}\psi (Q)| \le C \left( M\psi (Q)\right) \), where \(M\psi \) is the Hardy–Littlewood maximal function of \(\psi \) with respect to \(\sigma \), and the constant C only depend on the Ahlfors regularity of \(\sigma \). Thus it follows from (8.5) that

$$\begin{aligned}&\int _{\Delta } |S_r^{\overline{\alpha }}u(Q)|^2 \psi (Q) \mathrm{d}\sigma (Q)\nonumber \\&\quad \lesssim \iint _{B(Q_0,2r)\cap \Omega } |\nabla u|^2 \delta (X) A_{(\alpha -1)\delta (X)}M\psi (Q_X) \mathrm{d}X \nonumber \\&\quad \lesssim \iint _{B(Q_0,2r)\cap \Omega } |\nabla u|^2 \delta (X)^{2-n} \left( \int _{\Delta (Q_X, (\alpha -1)\delta (X))}M\psi (Q)\mathrm{d}\sigma (Q)\right) \mathrm{d}X . \end{aligned}$$
(8.6)

By switching the order of integration, we can bound the right hand side by:

$$\begin{aligned}&\int _{\Delta } |S_r^{\overline{\alpha }}u(Q)|^2 \psi (Q) \mathrm{d}\sigma (Q) \nonumber \\&\quad \lesssim \int _{\Delta (Q_0, 2(\alpha +1)r)} M\psi (Q) \iint _{\Gamma _{2\alpha r} (Q)} |\nabla u|^2\delta (X)^{2-n} \mathrm{d}X \mathrm{d}\sigma (Q) \nonumber \\&\quad = \int _{\Delta (Q_0, 2(\alpha +1)r)} M\psi (Q) |S_{2\alpha r} u(Q)|^2 \mathrm{d}\sigma (Q) \nonumber \\&\quad \le \Vert M\psi \Vert _{L^r(\Delta (Q_0,2(\alpha +1)r))} \left( \int _{\Delta (Q_0, 2(\alpha +1)r)}|S_{2\alpha r} u(Q)|^q \mathrm{d}\sigma (Q)\right) ^{2/q}. \end{aligned}$$
(8.7)

Since \(1<r<\infty \), we have

$$\begin{aligned} \Vert M\psi \Vert _{L^r(\Delta (Q_0,2(\alpha +1)r))} \le C \Vert \psi \Vert _{L^r(\Delta (Q_0,2(\alpha +1)r))} = C \Vert \psi \Vert _{L^r(\Delta )}= C. \end{aligned}$$
(8.8)

By (8.7), (8.8) and the definition (8.4), we conclude

$$\begin{aligned} \int _{\Delta } |S_r^{\overline{\alpha }} u(Q) |^q \mathrm{d}\sigma (Q)&\le C\int _{\Delta (Q_0, 2(\alpha +1)r)}|S_{2\alpha r} u(Q)|^q \mathrm{d}\sigma (Q)\\&\le C\int _{\Delta (Q_0, 2(\alpha +1)r)}|S_{2(\alpha +1) r} u(Q)|^q \mathrm{d}\sigma (Q) . \end{aligned}$$

This finishes the proof of Lemma 6.5. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z. BMO Solvability and \(A_{\infty }\) Condition of the Elliptic Measures in Uniform Domains. J Geom Anal 28, 866–908 (2018). https://doi.org/10.1007/s12220-017-9845-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9845-9

Keywords

Mathematics Subject Classification

Navigation