Skip to main content
Log in

The Magnetic Laplacian in Shrinking Tubular Neighborhoods of Hypersurfaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The Dirichlet Laplacian between two parallel hypersurfaces in Euclidean spaces of any dimension in the presence of a magnetic field is considered in the limit when the distance between the hypersurfaces tends to zero. We show that the Laplacian converges in a norm-resolvent sense to a Schrödinger operator on the limiting hypersurface whose electromagnetic potential is expressed in terms of principal curvatures and the projection of the ambient vector potential to the hypersurface. As an application, we obtain an effective approximation of bound-state energies and eigenfunctions in thin quantum layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carron, G., Exner, P., Krejčiřík, D.: Topologically nontrivial quantum layers. J. Math. Phys. 45, 774–784 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. da Costa, R.C.T.: Quantum mechanics of a constrained particle. Phys. Rev. A 23, 1982–1987 (1981)

    Article  MathSciNet  Google Scholar 

  3. da Costa, R.C.T.: Constraints in quantum mechanics. Phys. Rev. A 25, 2893–2900 (1982)

    Article  MathSciNet  Google Scholar 

  4. Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7, 73–102 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duclos, P., Exner, P., Krejčiřík, D.: Bound states in curved quantum layers. Commun. Math. Phys. 223, 13–28 (2001)

    Article  MATH  Google Scholar 

  6. Duclos, P., S\(\check{\text{ t }}\)ovíček, P., Tušek, M.: On the two-dimensional Coulomb-like potential with a central point interaction. J. Phys. A 43, 474020 (2010)

  7. Ekholm, T., Kovařík, H.: Stability of the magnetic Schrödinger operator in a waveguide. Commun. Partial Differ. Equ. 30(4), 539–565 (2005)

    Article  MATH  Google Scholar 

  8. Exner, P., Krejčiřík, D.: Bound states in mildly curved layers. J. Phys. A 34, 5969–5985 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Exner, P., Šeba, P.: Bound states in curved quantum waveguides. J. Math. Phys. 30, 2574–2580 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freitas, P., Krejčiřík, D.: Location of the nodal set for thin curved tubes. Indiana Univ. Math. J. 57(1), 343–376 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Froese, R., Herbst, I.: Realizing holonomic constraints in classical and quantum mechanics. Commun. Math. Phys. 220, 489–535 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Friedlander, L., Solomyak, M.: On the spectrum of the Dirichlet Laplacian in a narrow strip. Isr. J. Math. 170, 337–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Friedlander, L., Solomyak, M.: On the spectrum of the Dirichlet Laplacian in a narrow infinite strip. Am. Math. Soc. Transl. 225, 103–116 (2008)

    MathSciNet  Google Scholar 

  14. Hurt, N.E.: Mathematical Physics of Quantum Wires and Devices. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  15. Jensen, H., Koppe, H.: Quantum mechanics with constraints. Ann. Phys. 63, 586–591 (1971)

    Article  Google Scholar 

  16. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1966)

    Book  MATH  Google Scholar 

  17. Krejčiřík, D.: Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions. ESAIM: Control. Optim. Calcul. Var. 15, 555–568 (2009)

    Article  MATH  Google Scholar 

  18. Krejčiřík, D., Kříž, J.: On the spectrum of curved quantum waveguides. Publ. RIMS Kyoto Univ. 41(3), 757–791 (2005)

    Article  MATH  Google Scholar 

  19. Krejčiřík, D., Šediváková, H.: The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions. Rev. Math. Phys. 24, 1250018 (2012)

    Article  MathSciNet  Google Scholar 

  20. Kühnel, W.: Differential Geometry. AMS, Providence, RI (2006)

    Google Scholar 

  21. Lampart, J., Teufel, S., Wachsmuth, J.: Effective Hamiltonians for thin Dirichlet tubes with varying cross-section. Mathematical Results in Quantum Physics, Hradec Králové, 2010, xi+274 pp., pp. 183–189. World Scientific, Singapore (2011)

  22. Laptev, A., Weidl, T.: Hardy inequalities for magnetic Dirichlet forms. Oper. Theory Adv. Appl. 108, 299–305 (1999)

    MathSciNet  Google Scholar 

  23. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  24. Lin, C., Lu, Z.: On the discrete spectrum of generalized quantum tubes. Commun. Partial Differ. Equ. 31, 1529–1546 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin, C., Lu, Z.: Existence of bound states for layers built over hypersurfaces in \(\mathbb{R}^{n+1}\). J. Funct. Anal. 244, 1–25 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lin, C., Lu, Z.: Quantum layers over surfaces ruled outside a compact set. J. Math. Phys. 48, 053522 (2007)

    Article  MathSciNet  Google Scholar 

  27. Londergan, J.T., Carini, J.P., Murdock, D.P.: Binding and scattering in two-dimensional systems, LNP, vol. m60. Springer, Berlin (1999)

    Google Scholar 

  28. Lu, Z., Rowlett, J.: On the discrete spectrum of quantum layers. J. Math. Phys. 53, 073519 (2012)

    Article  MathSciNet  Google Scholar 

  29. Mitchell, K.A.: Gauge fields and extrapotentials in constrained quantum systems. Phys. Rev. A 63, 042112 (2001)

    Article  MathSciNet  Google Scholar 

  30. Nakahara, M.: Geometry, Topology, and Physics. Taylor & Francis Group, London (2003)

    MATH  Google Scholar 

  31. Simon, B.: Quantum Mechanics for Hamiltonians Defined by Quadratic Forms. Princeton University Press, Princeton (1971)

    Google Scholar 

  32. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. II. Publish or Perish, Houston (1999)

    MATH  Google Scholar 

  33. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. I. Publish or Perish, Houston (2005)

    Google Scholar 

  34. Teschl, G.: Mathematical Methods in Quantum Mechanics. AMS, Providence, RI (2009)

    Book  MATH  Google Scholar 

  35. Tolar, J.: On a Quantum Mechanical d’Alembert Principle, Group Theoretical Methods in Physics, LNP, vol. 313. Springer, Berlin (1988)

    Google Scholar 

  36. Wachsmuth, J., Teufel, S.: Effective Hamiltonians for constrained quantum systems. Mem. Am. Math. Soc. 1083, (2013)

  37. Wachsmuth, J., Teufel, S.: Constrained quantum systems as an adiabatic problem. Phys. Rev. A 82, 022112 (2010)

    Article  Google Scholar 

  38. Wittich, O.: \(L^2\)-homogenization of heat equations on tubular neighborhoods. arXiv:0810.5047 [math.AP] (2008)

Download references

Acknowledgments

Support by the Institute Mittag-Leffler (Djursholm, Sweden), where this paper was being prepared, is gratefully acknowledged. The work has been partially supported by the Project RVO61389005, and the Grants No. P203/11/0701 and No. GA13-11058S of the Czech Science Foundation (GAČR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Krejčiřík.

Additional information

Communicated by Jiaping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krejčiřík, D., Raymond, N. & Tušek, M. The Magnetic Laplacian in Shrinking Tubular Neighborhoods of Hypersurfaces. J Geom Anal 25, 2546–2564 (2015). https://doi.org/10.1007/s12220-014-9525-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9525-y

Keywords

Mathematics Subject Classification

Navigation