Skip to main content
Log in

Holomorphic Maps with Large Images

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We show that each pseudoconvex domain \(\Omega \subset {\mathbb {C}}^n\) admits a holomorphic map \(F\) to \({\mathbb {C}}^m\) with \(|F|\le C_1 e^{C_2 \hat{\delta }^{-6}}\), where \(\hat{\delta }\) is the minimum of the boundary distance and \((1+|z|^2)^{-1/2}\), such that every boundary point is a Casorati–Weierstrass point of \(F\). Based on this fact, we introduce a new anti-hyperbolic concept—universal dominability. We also show that for each \(\alpha >6\) and each pseudoconvex domain \(\Omega \subset {\mathbb C}^n\), there is a holomorphic function \(f\) on \({\Omega }\) with \(|f|\le C_\alpha e^{C_\alpha ' \hat{\delta }^{-\alpha }}\), such that every boundary point is a Picard point of \(F\). Applications to the construction of holomorphic maps of a given domain onto some \({\mathbb C}^m\) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace–Beltrami equation in complex manifolds. Publ. Math. IHES 25, 81–130 (1965)

    Article  MathSciNet  Google Scholar 

  2. Andrist, R.B., Wold, E.F.: The complement of the closed ball in \({\mathbb{C}}^3\) is not subelliptic, arXiv:1303.1804

  3. Bagemihl, F., Seidel, W.: Sequential and continuous limits of meromorphic functions. Ann. Acad. Sci. Fenn. Ser. A1 280 (1960), 17 pp

    Google Scholar 

  4. Buzzard, G., Lu, S.: Algebraic surfaces holomorphically dominable by \({\mathbb{C}}^2\). Invent. Math. 139, 617–659 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calabi, E., Eckmann, B.: A class of compact, complex manifolds which are not algebraic. Ann. Math. 58, 494–500 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  6. Catlin, D.: Subelliptic estimates for the \(\bar{\partial }\) -Neumann problem on pseudoconvex domains. Ann. of Math. 126, 131–191 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chirka, E.M.: Complex Analytic Sets. Kluwer, The Netherlands (1989)

    Book  MATH  Google Scholar 

  8. Cima, J.A., Krantz, S.G.: The Lindelöf principle and normal functions of several complex variables. Duke Math. J. 50, 303–328 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Collingwood, E.F., Lohwater, A.J.: The Theory of Cluster Sets. Cambridge University Press, Cambridge (1966)

    Book  MATH  Google Scholar 

  10. Demailly, J.-P.: Estimations \(L^2\) pour l’opérateur \(\bar{\partial }\) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup. 15, 457–511 (1982)

    MATH  MathSciNet  Google Scholar 

  11. Fornæss, J.E., Stout, E.L.: Polydiscs in complex manifolds. Math. Ann. 227, 143–153 (1977)

    Google Scholar 

  12. Fornæss, J.E., Stout, E.L.: Regular holomorphic images of balls. Ann. Inst. Fourier Grenoble 32, 23–36 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Forstnerič, F.: Noncritical holomorphic functions on Stein manifolds. Acta Math. 191, 143–189 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Forstnerič, F.: Stein Manifolds and Holomorphic Mappings. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  15. Forstnerič, F.: Oka manifolds: from Oka to Stein and back, arXiv:1211.6383

  16. Forstnerič, F., Globevnik, J.: Proper holomorphic discs in \({\mathbb{C}}^2\). Math. Res. Lett. 8, 257–274 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Forstnerič, F., Lárusson, F.: Holomorphic flexibility of compact complex surfaces. Int. Math. Res. Notices (2013). doi:10.1093/imrn/rnt044

    Google Scholar 

  18. Forstnerič, F., Ritter, T.: Oka properties of ball complements, arXiv:1211.6383

  19. Forstnerič, F., Winkelmann, J.: Holomorphic discs with dense images. Math. Res. Lett. 12, 265–268 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grauert, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135, 263–273 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  21. Grauert, H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. 68, 460–472 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  22. Green, M.L.: Holomorphic maps into complex projective space omitting hyperplanes. Trans. Am. Math. Soc. 169, 89–103 (1972)

    Article  MATH  Google Scholar 

  23. Green, M., Griffiths, P.: Two applications of algebraic geometry to entire holomorphic mappings. In: The Chern Symposium, Proc. Int. Sympos. Berkeley, CA, 1979. Springer, New York, pp. 41–74 (1980)

  24. Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2, 851–897 (1989)

    MATH  MathSciNet  Google Scholar 

  25. Gunning, R.C., Narasimhan, R.: Immersion of open Riemann surfaces. Math. Ann. 174, 103–108 (1967)

    Google Scholar 

  26. Hahn, K.T.: Non-tangential limit theorems for normal mappings. Pac. J. Math. 135, 57–64 (1988)

    Article  MATH  Google Scholar 

  27. Hanysz, A.: Oka properties of some hypersurface complements, arXiv:1211.6383

  28. Hartshorne, R.: Algebraic Geometry, GTM 52. Springer, Berlin (1977)

    Book  Google Scholar 

  29. Hörmander, L.: \(L^2\) -estimates and existence theorems for the \(\bar{\partial }\) -equation. Acta Math. 113, 89–152 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jarnicki, M., Pflug, P.: Extension of Holomorphic Functions. Walter de Gruyter, New York (2000)

    Book  MATH  Google Scholar 

  31. Kawamata, Y.: On Bloch’s conjecture. Invent. Math. 57, 97–100 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kobayashi, S.: Hyperbolic Complex Spaces. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  33. Løw, E.: An explicit holomorphic map of bounded domains in \({\mathbb{C}}^n\) with \(C^2\) -boundary onto the polydisc. Manuscr. Math. 42, 105–113 (1983)

    Article  Google Scholar 

  34. Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 85–112 (1975)

    MATH  Google Scholar 

  35. Noguchi, J.: Holomorphic curves in algebraic varieties. Hiroshima Math. J. 7, 833–853 (1977)

    MATH  MathSciNet  Google Scholar 

  36. Ochiai, T.: On holomorphic curves in algebraic varieties with ample irregularity. Invent. Math. 43, 83–96 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ohsawa, T., Takegoshi, K.: On the extension of \(L^2\) holomorphic functions. Math. Z. 195, 197–204 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ohsawa, T.: On the extension of \(L^2\) holomorphic functions V-effects of generalization. Nagoya Math. J. 161, 1–21 (2001)

    MATH  MathSciNet  Google Scholar 

  39. Remmert, R.: Holomorphe und meromorphe Abbildungen Komplexer Räume. Math. Ann. 133, 328–370 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rosay, J.-P., Rudin, W.: Holomorphic maps from \({\mathbb{C}}^n\) to \({\mathbb{C}}^n\). Trans. Am. Math. Soc. 310, 47–86 (1988)

    MATH  MathSciNet  Google Scholar 

  41. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  42. Styer, D., Minda, C.D.: The use of the Monodromy theorem and entire functions with nonvanishing derivative. Am. Math. Mon. 81, 639–642 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen Co., LTD., Tokyo (1959)

    MATH  Google Scholar 

  44. Vinberg, E.B., Gindikin, S.G., Piatetskii-Shapiro, I.I.: Classification and canonical realization of complex bounded homogeneous domains. Trans. Moscow Math. Soc. 12, 404–437 (1963)

    MATH  Google Scholar 

  45. Winkelmann, J.: Non-degenerate maps and sets. Math. Z. 249, 783–795 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wu, H.H.: Normal families of holomorphic mappings. Acta Math. 119, 193–233 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  47. Zalcman, L.: Real proofs of complex theorems (and vice versa). Am. Math. Mon. 81, 115–137 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research supported by the Key Program of NSFC No. 11031008. We would like to thank Professor Franc Forstnerič for numerous comments on this paper. We also thank Dr. Qi’an Guan for catching an inaccuracy in the proof of Proposition 1.3. Finally, we wish to thank the referee for a very careful reading and many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Yong Chen.

Additional information

Communicated by Der-Chen Edward Chang.

Dedicated to the memory of Shoshichi Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, BY., Wang, X. Holomorphic Maps with Large Images. J Geom Anal 25, 1520–1546 (2015). https://doi.org/10.1007/s12220-014-9482-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9482-5

Keywords

Mathematics Subject Classification

Navigation