Skip to main content
Log in

A Lower Bound on the Spectrum of the Sublaplacian

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We establish a new lower bound on the first nonzero eigenvalue \(\lambda _1 (\theta )\) of the sublaplacian \(\Delta _b\) on a compact strictly pseudoconvex CR manifold \(M\) carrying a contact form \(\theta \) whose Tanaka–Webster connection has pseudohermitian Ricci curvature bounded from below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The operator \(P_0\) in this paper and [11] differ by a multiplicative factor \(\frac{1}{4}\).

  2. Discrepancies among (91) and (3.5) in [11], p. 270, are due to the different convention as to wedge products of \(1\)-forms producing the additional \(2\) factor in (12). Cf. also (1.62) in [13], p. 39, and (9.7) in [13], p. 424. Through this paper conventions as to wedge products and exterior differentiation calculus are those in [39, 40], pp. 35–36.

References

  1. Aribi, A., El Soufi, A.: Inequalities and bounds for the eigenvalues of the sub-Laplacian on a strictly pseudoconvex CR manifold. Calc. Var. Partial Differ. Equ. 1–27 (2012). doi:10.1007/s00526-012-0523-2.

  2. Aribi, A., Dragomir, S., El Soufi, A.: On the continuity of the eigenvalues of a sublaplacian. Can. Math. Bull. (2012). doi:10.4153/CMB-2012-026-9.

  3. Barletta, E., Dragomir, S.: On the spectrum of a strictly pseudoconvex CR manifold. Abhandlungen Math. Sem. Univ. Hamburg 67, 143–153 (1997)

    MathSciNet  Google Scholar 

  4. Barletta, E.: The Lichnerowicz theorem on CR manifolds. Tsukuba J. Math. 31(1), 77–97 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Barletta, E., Dragomir, S., Duggal, K.L.: Foliations in Cauchy–Riemann Geometry. Mathematical Surveys and Monographs, vol. 140. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  6. Barletta, E., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from a nondegenerate CR manifold into a Riemannian manifold. Indiana Univ. Math. J. 50(2), 719–746 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barletta, E., Dragomir, S., Urakawa, H.: Yang-Mills fields on CR manifolds, J. Math. Phys. 47(8), 083504 1 (2008).

    Google Scholar 

  8. Baudoin, F., Garofalo, N.: Generalized Bochner formulas and Ricci lower bounds for sub-Riemannian manifolds of rank two. preprint, arXiv:0904.1623v1 [math.DG] (2009).

  9. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété Riemannienne. Lecture Notes in Math, vol. 194. Springer-Verlag, Berlin-New York (1971)

    MATH  Google Scholar 

  10. Bony, J.-M.: Principe du maximum, inégalite de Harnack et unicité du probleme de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19(1), 277–304 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang, S.-C., Chiu, H.-L.: Nonnegativity of CR Paneitz operator and its application to the CR Obata’s theorem. J. Geom. Anal. 19, 261–287 (2009). doi:10.1007/s12220-008-9060-9

    Article  MATH  MathSciNet  Google Scholar 

  12. Chiu, H.-L.: The sharp lower bound for the first positive eigenvalue of the sublaplacian on a pseudohermitian \(3\)-manifold. Ann. Global Anal. Geom. 30, 81–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds. Progress in Mathematics, vol. 246. Birkhäuser, Boston-Basel-Berlin (2006)

    MATH  Google Scholar 

  14. El Soufi, A., Colbois, B.: Extremal eigenvalues of the Laplacian in a conformal class of metrics the “conformal spectrum”. Ann. Global Anal. Geom. 24(4), 337–349 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. El Soufi, A., Colbois, B.: Eigenvalues of the Laplacian acting on \(p\)-forms and metric conformal deformations. Proc. Am. Math. Soc. 134(3), 715–721 (2006)

    Article  MATH  Google Scholar 

  16. El Soufi, A., Ilias, S.: Immersions minimales, premiere valeur propre du Laplacien et volume conforme. Mathematische Annalen 275, 257–267 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. El Soufi, A., Ilias, S.: Une inegalité du type “Reilly” pour les sous-variétés de l’espace hyperbolique. Comment. Math. Helvetici 67, 167–181 (1992)

    Article  MATH  Google Scholar 

  18. El Soufi, A., Ilias, S.: Majoration de la seconde valeur propre d’un operateur de Schrödinger sur une variété compacte et applications. J. Funct. Anal. 103(2), 294–316 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. El Soufi, A., Ilias, S.: Riemannian manifolds admitting isometric immersions by their 1st eigenfunctions. Pac. J. Math. 195(1), 91–99 (2000)

    Article  MATH  Google Scholar 

  20. El Soufi, A., Ilias, S.: Second eigenvalue of Schrödinger operators and mean curvature of a compact submanifold. Commun. Math. Phys. 208, 761–770 (2000)

    Article  MATH  Google Scholar 

  21. El Soufi, A., Ilias, S.: Extremal metrics for the 1st eigenvalue of the Laplacian in a conformal class. Proc. Am. Math. Soc. 131(5), 1611–1618 (2003)

    Article  MATH  Google Scholar 

  22. El Soufi, A., Ilias, S.: Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold. Ill. J. Math. 51, 645–666 (2007)

    MATH  Google Scholar 

  23. El Soufi, A., Ilias, S.: Laplacian eigenvalues functionals and metric deformations on compact manifolds. J. Geom. Phys. 58(1), 89–104 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. El Soufi, A., Kiwan, R.: Extremal 1st Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry. SIAM J. Math. Anal. 39(4), 1112–1119 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. El Soufi, A., Kiwan, R.: Extremal property of spherical shells with respect to the second Dirichlet eigenvalue. Commun. Pure Appl. Anal. 7(5), 1193–1201 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. El Soufi, A., Moukadem, N.: Critical potentials for the eigenvalues of Schrödinger operators. J. Math. Anal. Appl. 314, 195–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. El Soufi, A., Colbois, B., Dryden, E.: \(G\)-invariant eigenvalues of \(G\)-invariant metrics on compact manifolds. Math. Z. 258, 29–41 (2007)

    Google Scholar 

  28. El Soufi, A., Giacomini, H., Jazar, M.: A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J. 135(1), 181–202 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. El Soufi, A., Ilias, S., Ros, A.: Sur la Premiere valeur propre des Tores. Seminaire de Theorie Spectrale et Geometrie de l’Institut Fourier, vol. 15, pp. 17–23 (1996–1997).

  30. Fefferman, C.: Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. 103(2), 395–416 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fefferman, C.: Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. 104, 393–394 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  32. Graham, C.R.: On Sparling’s characterization of Fefferman metrics. Am. J. Math. 109, 853–874 (1987)

    Article  MATH  Google Scholar 

  33. Graham, C.R., Lee, J.M.: Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math. J. 57, 697–720 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Greenleaf, A.: The first eigenvalue of a sublaplacian on a pseudohermitian manifold. Commun. Partial Differ. Equ. 10(2), 191–217 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ivanov, S., Vassilev, D.: An Obata type result for the first eigenvalue of the sub-laplacian on a CR manifold with a divergence free torsion. preprint, arXiv:1203.5812v1 [math.DG] (2012).

  36. Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Diff. Geom. 25, 167–197 (1987)

    MATH  MathSciNet  Google Scholar 

  37. Jost, J., Xu, C.-J.: Subelliptic harmonic maps. Trans. AMS 350(11), 4633–4649 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jung, S.-D., Lee, K.-R., Richardson, K.: Generalized Obata theorem and its applications on foliations. arXiv:0908.4545v1 [math.DG] (2009).

  39. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Interscience Publishers, New York (1963)

    MATH  Google Scholar 

  40. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Interscience Publishers, New York (1969)

    MATH  Google Scholar 

  41. Lee, J.M.: The Fefferman metric and pseudohermitian invariants. Trans. AMS 296(1), 411–429 (1986)

    MATH  Google Scholar 

  42. Lee, J.M.: Pseudo-Einstein structures on CR manifolds. Am. J. Math. 110, 157–178 (1988)

    Article  MATH  Google Scholar 

  43. Lee, J., Richardson, K.: Lichnerowicz and Obata theorems for foliations. Pac. J. Math. 206(2), 339–357 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Li, S.-Y., Luk, H.-S.: The sharp lower bound for the first positive eigenvalue of a sub-Laplacian on a pseudohermitian manifold. Proc. Am. Math. Soc. 132(3), 789–798 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Menikoff, A., Sjöstrand, J.: On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235, 55–58 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  46. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  47. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  48. Pak, H.-K., Park, J.-H.: A note on generalized Lichnerowicz-Obata theorem for Riemannian foliations. Bull. Korean Math. Soc. 48(4), 769–777 (2011). doi:10.4134/BKMS.2011.48.4.769

    Article  MATH  MathSciNet  Google Scholar 

  49. Tanaka, N.: A Differential Geometric Study on Strongly Pseudo-Convex Manifolds. Kinokuniya Book Store Co. Ltd, Kyoto (1975)

    MATH  Google Scholar 

  50. Webster, S.M.: Pseudohermitian structures on a real hypersurface. J. Differ. Geom. 13, 25–41 (1978)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Dragomir.

Appendix: The Chang–Chiu Inequality

Appendix: The Chang–Chiu Inequality

The purpose of Appendix is to give a proof of

$$\begin{aligned} 4 n \, \left\| u_0 \right\| _{L^2}^2 \le \frac{1}{n} \, \left\| \Delta _b u \right\| _{L^2}^2 + 4 \, \tau _0 \, \left\| \nabla ^H u \right\| _{L^2}^2 \end{aligned}$$
(91)

for any \(u \in C^\infty (M, {\mathbb R})\) (compareFootnote 2 to (3.5) in [11], p. 270). This is referred to as the Chang–Chiu inequality. To prove (91) let us contract (13) by \(u^\beta \) so that to obtain \(u^\beta \nabla _0 u_\beta = u^\beta \nabla _\beta u_0 - A_{\alpha \beta } u^\alpha u^\beta \) or

$$\begin{aligned} u^\beta \, \nabla _0 u_\beta = \nabla _\beta \left( u_0 u^\beta \right) - u_0 \, \nabla _\beta u^\beta - A_{\alpha \beta } u^\alpha u^\beta . \end{aligned}$$
(92)

On the other hand (by (12)), \(\nabla _\beta u^\beta = \nabla _{\overline{\beta }} u^{\overline{\beta }} - 2 i n \, u_0\) so that (by substitution into (92))

$$\begin{aligned} u^\beta \nabla _0 u_\beta + u_0 \, \nabla _{\overline{\beta }} u^{\overline{\beta }} = 2 i n \, u_0^2 - A_{\alpha \beta } u^\alpha u^\beta + \nabla _\beta \left( u_0 u^\beta \right) . \end{aligned}$$
(93)

Next (again by (13)), \(u_0 \, \nabla _{\overline{\beta }} u^{\overline{\beta }} = \nabla _{\overline{\beta }} \left( u_0 u^{\overline{\beta }} \right) - u^{\overline{\beta }} \left( \nabla _0 u_{\overline{\beta }} + u_\gamma A^\gamma _{\overline{\beta }} \right) \) hence (by substitution of \(u_0 \, \nabla _{\overline{\beta }} u^{\overline{\beta }}\) into (93))

$$\begin{aligned}&i \left( u^{\overline{\beta }} \, \nabla _0 u_{\overline{\beta }} - u^\beta \, \nabla _0 u_\beta \right) \nonumber \\&\quad = 2 n u_0^2 + i \left( A_{\alpha \beta } u^\alpha u^\beta - A_{\overline{\alpha }\overline{\beta }} u^{\overline{\alpha }} u^{\overline{\beta }} \right) + i \left\{ \nabla _{\overline{\alpha }} \left( u_0 u^{\overline{\alpha }} \right) - \nabla _\alpha \left( u_0 u^\alpha \right) \right\} \end{aligned}$$
(94)

(compare to (2.4) in Lemma 2.2, [11], p. 268). Calculations are performed with respect to an arbitrary local frame \(\{ T_\alpha : 1 \le \alpha \le n \}\) in \(T_{1,0}(M)\) (rather than a \(G_\theta \)-orthonormal frame, as in [11]). The next step is to evaluate the left-hand side of (94) in terms of the operator \(P + \overline{P}\). One has \(u_0 = (i/2n) \, \left( \nabla _\beta u^\beta - \nabla _{\overline{\beta }} u^{\overline{\beta }} \right) \) hence (by (13))

$$\begin{aligned} u^{\overline{\alpha }} \nabla _0 u_{\overline{\alpha }} = \frac{i}{2n} \, u^{\overline{\alpha }} \left( {{u_{\overline{\alpha }}}^{\overline{\gamma }}}_{\overline{\gamma }} - {{u_{\overline{\alpha }}}^\gamma }_\gamma \right) - A_{\overline{\alpha }\overline{\beta }} u^{\overline{\alpha }} u^{\overline{\beta }} . \end{aligned}$$
(95)

Using \(P_{\overline{\alpha }} u \equiv {{u_{\overline{\alpha }}}^\gamma }_\gamma - 2 n i \, A_{\overline{\alpha }\overline{\beta }} u^{\overline{\beta }}\) the identity (95) becomes

$$\begin{aligned} i \, u^{\overline{\alpha }} \, \nabla _0 u_{\overline{\alpha }} = \frac{1}{2n} \, u^{\overline{\alpha }} \left( P_{\overline{\alpha }} u - {{u_{\overline{\alpha }}}^{\overline{\gamma }}}_{\overline{\gamma }} \right) . \end{aligned}$$
(96)

Let us take the complex conjugate of (96) and add the resulting equation to (96). We obtain

$$\begin{aligned} 2n i \, \left( u^{\overline{\alpha }} \, \nabla _0 u_{\overline{\alpha }} - u^\beta \, \nabla _0 u_\beta \right) = u^{\overline{\alpha }} P_{\overline{\alpha }} u + u^\alpha P_\alpha u - \left\{ u^{\overline{\alpha }} \, {{u_{\overline{\alpha }}}^{\overline{\gamma }}}_{\overline{\gamma }} + u^\alpha \, {{u_\alpha }^\gamma }_\gamma \right\} \end{aligned}$$
(97)

where \(P_\alpha u \equiv {{u_\alpha }^{\overline{\gamma }}}_{\overline{\gamma }} + 2 n i A_{\alpha \beta } u^\beta \). Let us replace \(u^\alpha \; {{u_\alpha }^\beta }_\beta + u^{\overline{\alpha }} \; {{u_{\overline{\alpha }}}^{\overline{\beta }}}_{\overline{\beta }}\) from (18) into (97). We obtain

$$\begin{aligned} 2ni \left( u^{\overline{\alpha }} \, \nabla _0 u_{\overline{\alpha }} - u^\alpha \, \nabla _0 u_\alpha \right)&= 2 \left( u^\alpha \, P_\alpha u + u^{\overline{\alpha }} P_{\overline{\alpha }} u \right) \nonumber \\&\quad - 2 n i \left( A_{\alpha \beta } u^\alpha u^\beta - A_{\overline{\alpha }\overline{\beta }} u^{\overline{\alpha }} u^{\overline{\beta }} \right) \nonumber \\&\quad + \left( \nabla ^H u \right) ( \Delta _b u). \end{aligned}$$
(98)

Finally substitution from (98) into (94) leads to

$$\begin{aligned}&2 \left( u^\alpha \, P_\alpha \!+\! u^{\overline{\alpha }} \, P_{\overline{\alpha }} u \right) \!+\! \left( \nabla ^H u \right) \left( \Delta _b u \right) \nonumber \\&\quad = 4 n^2 u_0^2 \!+\! 4 n i \left( A_{\alpha \beta } u^\alpha u^\beta \!-\! A_{\overline{\alpha }\overline{\beta }} u^{\overline{\alpha }\overline{\beta }} \right) \!+\! 2 n i \left\{ \nabla _{\overline{\alpha }} \left( u_0 u^{\overline{\alpha }} \right) \!-\! \nabla _\alpha \left( u_0 u^\alpha \right) \right\} .\qquad \quad \end{aligned}$$
(99)

Let us observe that

$$\begin{aligned}&i \left( A_{\alpha \beta } u^\alpha u^\beta - A_{\overline{\alpha }\overline{\beta }} u^{\overline{\alpha }\overline{\beta }} \right) = A\left( \nabla ^H u , \, J \nabla ^H u \right) ,\\&i \left\{ \nabla _\alpha \left( u_0 u^\alpha \right) - \nabla _{\overline{\alpha }} \left( u_0 u^{\overline{\alpha }} \right) \right\} = \mathrm{div} \left( u_0 \, J \nabla ^H u \right) , \end{aligned}$$

and \(u^\alpha \, P_\alpha + u^{\overline{\alpha }} \, P_{\overline{\alpha }} u = g_\theta ^*(L u , \, d_b u )\) where \(L = P + \overline{P}\). Then (99) becomes

$$\begin{aligned} 2 \, g_\theta ^*\left( L u , \, d_b u \right) + \left( \nabla ^H u \right) (\Delta _b u )&= 4 n^2 \, u_0^2 \nonumber \\&\quad + 4 n \, A \left( \nabla ^H u , \, J \nabla ^H u \right) - 2 n \, \mathrm{div} \left( u_0 \, J \nabla ^H u \right) .\nonumber \\ \end{aligned}$$
(100)

Let us integrate over \(M\) and use Green’s lemma. Then (by Lemma 1)

$$\begin{aligned}&- 2 \int \limits _M (P_0 u) u \, \Psi _\theta + \int \limits _M \left( \nabla ^H u \right) (\Delta _b u) \, \Psi _\theta \nonumber \\&\quad = 4 n^2 \, \left\| u_0 \right\| _{L^2}^2 + 4 n \int \limits _M A \left( \nabla ^H u , \, J \nabla ^H u \right) \, \Psi _\theta . \end{aligned}$$
(101)

Also (again by Green’s lemma)

$$\begin{aligned} \int \limits _M \left( \nabla ^H u \right) (\Delta _b u ) \; \Psi _\theta = \int \limits _M \left( \Delta _b u \right) ^2 \; \Psi _\theta = \left\| \Delta _b u \right\| _{L^2}^2 . \end{aligned}$$

Finally as \(P_0\) is nonnegative (87) and (101) lead to (91). Q.e.d.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aribi, A., Dragomir, S. & El Soufi, A. A Lower Bound on the Spectrum of the Sublaplacian. J Geom Anal 25, 1492–1519 (2015). https://doi.org/10.1007/s12220-014-9481-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9481-6

Keywords

Navigation