Skip to main content
Log in

Conformal Diffeomorphisms of Gradient Ricci Solitons and Generalized Quasi-Einstein Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we extend some well-known rigidity results for conformal changes of Einstein metrics to the class of generalized quasi-Einstein (GQE) metrics, which includes gradient Ricci solitons. In order to do so, we introduce the notions of conformal diffeomorphisms and vector fields that preserve a GQE structure. We show that a complete GQE metric admits a structure-preserving, non-homothetic complete conformal vector field if and only if it is a round sphere. We also classify the structure-preserving conformal diffeomorphisms. In the compact case, if a GQE metric admits a structure-preserving, non-homothetic conformal diffeomorphism, then the metric is conformal to the sphere, and isometric to the sphere in the case of a gradient Ricci soliton. In the complete case, the only structure-preserving non-homothetic conformal diffeomorphisms from a shrinking or steady gradient Ricci soliton to another soliton are the conformal transformations of spheres and inverse stereographic projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that this class of metrics differs from the Kähler generalized quasi-Einstein metrics of Guan [13] and the generalized quasi-Einstein metrics of Chaki [8].

  2. An alternative approach is to apply the Lie derivative with respect to V to equation (3.1), making use of formula (3.2) of [22]: L V Ric h =−(n−2)Hess h σ−Δσh.

References

  1. Böhm, C.: Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math. 134(1), 145–176 (1998)

    Google Scholar 

  2. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94(1), 119–145 (1925)

    Article  MathSciNet  Google Scholar 

  3. Bryant, R.: Ricci flow solitons in dimension three with SO(3)-symmetries. http://www.math.duke.edu/~bryant/3DRotSymRicciSolitons.pdf

  4. Cao, H.-D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Am. Math. Soc. 364(5), 2377–2391 (2012)

    Article  MathSciNet  Google Scholar 

  5. Case, J.S.: The nonexistence of quasi-Einstein metrics. Pac. J. Math. 248(2), 277–284 (2010)

    Article  MathSciNet  Google Scholar 

  6. Case, J., Shu, Y.-J., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29(1), 93–100 (2011)

    MathSciNet  Google Scholar 

  7. Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271(3–4), 751–756 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chaki, M.C.: On generalized quasi Einstein manifolds. Publ. Math. (Debr.) 58(4), 683–691 (2001)

    MathSciNet  Google Scholar 

  9. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189–237 (1996)

    Article  MathSciNet  Google Scholar 

  10. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363–382 (2009)

    MATH  Google Scholar 

  11. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I. Mathematical Surveys and Monographs, vol. 135. American Mathematical Society, Providence (2007)

    Google Scholar 

  12. Fang, F., Li, X.-D., Zhang, Z.: Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature. Ann. Inst. Fourier (Grenoble) 59(2), 563–573 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guan, D.Z.-D.: Quasi-Einstein metrics. Int. J. Math. 6(3), 371–379 (1995)

    Article  MATH  Google Scholar 

  14. He, C., Petersen, P., Wylie, W.: On the classification of warped product Einstein metrics. Commun. Anal. Geom. 20(2), 271–312 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ivey, T.: Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3(4), 301–307 (1993)

    MathSciNet  Google Scholar 

  16. Kanai, M.: On a differential equation characterizing a Riemannian structure of a manifold. Tokyo J. Math. 6(1), 143–151 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kim, D.-S., Kim, Y.H.: Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Am. Math. Soc. 131(8), 2573–2576 (2003)

    Article  MATH  Google Scholar 

  18. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley Classics Library. Wiley, New York (1996). Reprint of the 1963 original

    Google Scholar 

  19. Kotschwar, B.: On rotationally invariant shrinking Ricci solitons. Pac. J. Math. 236(1), 73–88 (2008)

    Article  MathSciNet  Google Scholar 

  20. Kotschwar, B.: Backwards uniqueness for the Ricci flow. Int. Math. Res. Not. 21, 4064–4097 (2010)

    MathSciNet  Google Scholar 

  21. Kühnel, W.: Conformal transformations between Einstein spaces. In: Conformal Geometry, Bonn, 1985. Aspects Math., vol. E12, pp. 105–146. Vieweg, Braunschweig (1988)

    Chapter  Google Scholar 

  22. Kühnel, W., Rademacher, H.-B.: Einstein spaces with a conformal group. Results Math. 56(1–4), 421–444 (2009)

    Google Scholar 

  23. Lichnerowicz, A.: Géométrie des Groupes de Transformations. Travaux et Recherches Mathématiques, III. Dunod, Paris (1958)

    MATH  Google Scholar 

  24. Maschler, G.: Special Kähler-Ricci potentials and Ricci solitons. Ann. Glob. Anal. Geom. 34(4), 367–380 (2008)

    Article  MathSciNet  Google Scholar 

  25. Nagano, T.: The conformal transformation on a space with parallel Ricci tensor. J. Math. Soc. Jpn. 11, 10–14 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  26. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osgood, B., Stowe, D.: The Schwarzian derivative and conformal mapping of Riemannian manifolds. Duke Math. J. 67(1), 57–99 (1992)

    Article  MathSciNet  Google Scholar 

  28. Petersen, P.: Riemannian Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 171. Springer, New York (2006)

    MATH  Google Scholar 

  29. Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10(4), 757–799 (2011)

    MATH  MathSciNet  Google Scholar 

  30. Qian, Z.: Estimates for weighted volumes and applications. Q. J. Math. Oxford Ser. (2) 48(190), 235–242 (1997)

    Article  MATH  Google Scholar 

  31. Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251–275 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yano, K., Nagano, T.: Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math. (2) 69, 451–461 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yokota, T.: Perelman’s reduced volume and a gap theorem for the Ricci flow. Commun. Anal. Geom. 17(2), 227–263 (2009)

    Article  MathSciNet  Google Scholar 

  34. Zhang, S.J.: On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below. Acta Math. Sin. Engl. Ser. 27(5), 871–882 (2011)

    Google Scholar 

  35. Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pac. J. Math. 242(1), 189–200 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their thorough reading of the paper and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Wylie.

Additional information

Communicated by Ben Andrews.

The second author was supported in part by NSF-DMS grant 0905527.

Appendix A: Conformal Fields on Warped Products over a One-Dimensional Base

Appendix A: Conformal Fields on Warped Products over a One-Dimensional Base

Here we collect some calculations for conformal fields of a Riemannian metric h of the form

$$h = dt^2 + u(t)^2 g_N $$

on M=I×N, where I is an open interval. Let V be a vector field on M. We write

$$V = v_0(t, x) \frac{\partial}{\partial t} +V_t, $$

where v 0 is a function on M and V t is the projection of V onto the factor {tN. We have the following necessary and sufficient conditions for V to be a conformal field for h.

Proposition A.1

V is a conformal field for h,

$$L_V h = 2 \sigma h, $$

if and only if

  1. (1)

    V t is a conformal field for g N for each t: \(L_{V_{t}} g_{N} = 2 \omega_{t} g_{N}\);

  2. (2)

    \(\frac{\partial}{\partial t}(v_{0} u^{-1}) = \omega_{t} u^{-1}\);

  3. (3)

    \(\frac{\partial V_{t}}{\partial t} = -u^{-2} \nabla^{N} v_{0}\),

whereN v 0 is the gradient of v 0(t,⋅) on {tN. Moreover,

$$\sigma= v_0u^{-1} \frac{\partial u}{\partial t} + \omega_t = \frac{\partial v_0}{\partial t}.$$

Proof

We compute the Lie derivative of h. Let (x 1,…,x n−1) be normal coordinates at some pN, and let V t =v i (t,x) i , with the Einstein summation convention in effect for i=1 to n−1. Here, \(\partial_{i} = \frac{\partial}{\partial x^{i}}\) and we let \(\partial_{t} = \frac{\partial}{\partial t}\). To begin, we record the following Lie brackets.

$$\begin{aligned} [V, \partial_t] &= -\frac{\partial v_0}{\partial t} \partial_t - \frac{\partial v_i}{\partial t} \partial_i \\ [V, \partial_j] &= -\frac{\partial v_0}{\partial x^j} \partial_t - \frac{\partial v_i}{\partial x^j} \partial_i. \end{aligned}$$

Now, at the point (t,p),

$$\begin{aligned} (L_V h) (\partial_t, \partial_t) &= D_V h(\partial_t, \partial_t) -2 h\bigl([V, \partial_t],\partial_t\bigr) \\ &= 2 \frac{\partial v_0}{\partial_t}, \\ (L_V h) (\partial_t, \partial_j) &= D_V h(\partial_t, \partial_j)- h\bigl([V, \partial_t], \partial_j\bigr) - h\bigl( \partial_t, [V, \partial_j]\bigr) \\ &= u^2 \frac{\partial v_j}{\partial t} + \frac{\partial v_0}{\partial x^j}, \\ (L_V h) (\partial_j, \partial_k) &= D_V h(\partial_j, \partial_k)- h\bigl([V, \partial_j], \partial_k\bigr) - h\bigl( \partial_j, [V, \partial_k]\bigr) \\ &= 2v_0 uu' \delta_{jk}+ u^2 \biggl(\frac{\partial v_k}{\partial x^j}+\frac{\partial v_j}{\partial x^k} \biggr) \\ &= 2v_0 uu' g_N(\partial_j, \partial_k)+u^2 (L_{V_t} g_N) ( \partial_j, \partial_k). \end{aligned}$$

In particular, for arbitrary vector fields X,Y tangent to {tN,

$$\begin{aligned} (L_V h) (\partial_t, X) &= u^2 g_N \biggl(X, \frac{\partial V_t}{\partial t} \biggr) + D_X v_0, \\ (L_V h) (X,Y) &= 2v_0 uu' g_N(X,Y)+u^2 (L_{V_t} g_N) (X,Y). \end{aligned}$$

Then L V h equals 2σh if and only if

$$\begin{aligned} \sigma &= \frac{\partial v_0}{\partial t}, \\ u^2 \frac{\partial V_t}{\partial t} &= - \nabla^N v_0, \\ L_{V_t} g_N &= 2 \omega_t g_N, \end{aligned}$$

where ω t :=σv 0 u −1 u′. The first equation is equivalent to

$$\frac{\partial}{\partial t}\bigl(v_0 u^{-1}\bigr) = \omega u^{-1}. $$

 □

Two consequences of this result are the following.

Corollary A.2

If V is a conformal field for h as above, then v 0=v 0(t) if and only if V t is a fixed homothetic vector field for g N .

Proof

Equation (3) of the previous proposition shows that v 0=v 0(t) if and only if V t is independent of t. In this case, (2) implies that ω is constant. □

In fact, we can solve for v 0 and σ explicitly.

Corollary A.3

With notation as above,

$$\begin{aligned} v_0 =& u(t) \biggl(A(x) + \int \frac{\omega_t(x)}{u(t)} dt \biggr) \\ \sigma =&u'(t) \biggl(A(x) + \int \frac{\omega_t(x)}{u(t)} dt \biggr) + \omega_t(x) , \end{aligned}$$

where A(x) is a function on N.

Proof

Integrating equation (2) of the proposition with respect to t gives the formula for v 0. The formula for σ follows from \(\sigma = \frac{\partial v_{0}}{\partial t}\). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauregui, J.L., Wylie, W. Conformal Diffeomorphisms of Gradient Ricci Solitons and Generalized Quasi-Einstein Manifolds. J Geom Anal 25, 668–708 (2015). https://doi.org/10.1007/s12220-013-9442-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-013-9442-5

Keywords

Mathematics Subject Classification

Navigation