Skip to main content

Advertisement

Log in

L 1 Hardy Inequalities with Weights

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove sharp homogeneous improvements to L 1 weighted Hardy inequalities involving distance from the boundary. In the case of a smooth domain, we obtain lower and upper estimates for the best constant of the remainder term. These estimates are sharp in the sense that they coincide when the domain is a ball or an infinite strip. In the case of a ball, we also obtain further improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alter, F., Caselles, V.: Uniqueness of the Cheeger set of a convex body. Nonlinear Anal. TMA 70(1), 32–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avkhadiev, F.G.: Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21, 3–31 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved L p Hardy inequalities with best constants. Trans. Am. Math. Soc. 356(6), 2169–2196 (2003)

    Article  MathSciNet  Google Scholar 

  4. Barbatis, G., Filippas, S., Tertikas, A.: Series expansion for L p Hardy inequalities. Indiana Univ. Math. J. 52(1), 171–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbatis, G., Filippas, S., Tertikas, A.: Refined geometric L p Hardy inequalities. Commun. Contemp. Math. 5(6), 869–881 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 25(1–2), 217–237 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Cannarsa, P., Cardaliaguet, P.: Representation of equilibrium solutions to the table problem for growing sandpiles. J. Eur. Math. Soc. 6, 1–30 (2004)

    MathSciNet  Google Scholar 

  8. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations and optimal control. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 58. Birkhäuser, Boston (2004)

    Google Scholar 

  9. Crasta, G., Malusa, A.: The distance function from the boundary in a Minkowski space. Trans. Am. Math. Soc. 359(12), 5725–5759 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  11. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. Filippas, S., Maz’ya, V.G., Tertikas, A.: A sharp Hardy Sobolev inequality. C. R. Acad. Sci., Ser. 1 Math. 339, 483–486 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Filippas, S., Maz’ya, V.G., Tertikas, A.: On a question of Brezis and Marcus. Calc. Var. Partial Differ. Equ. 25(4), 491–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Filippas, S., Maz’ya, V.G., Tertikas, A.: Critical Hardy-Sobolev inequalities. J. Math. Pures Appl. 87, 37–56 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Filippas, S., Tertikas, A., Tidblom, J.: On the structure of Hardy-Sobolev-Maz’ya inequalities. J. Eur. Math. Soc. 11(6), 1165–1185 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fridman, V., Kawohl, B.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44(4), 659–667 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin, (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  18. Giorgieri, E.: A boundary value problem for a PDE model in mass transfer theory: representation of solutions and regularity results. PhD Thesis, Universitá di Roma Tor Vergata, Rome, Italy (2004)

  19. Hardy, G., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  20. Lewis, R.T., Li, J.: A geometric characterization of a sharp Hardy inequality. Preprint arXiv:1103.5429

  21. Li, Y.Y., Nirenberg, L.: Regularity of the distance function to the boundary. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 29, 257–264 (2005)

    MathSciNet  Google Scholar 

  22. Marcus, M., Mizel, V.J., Pinchover, Y.: On the best constant for Hardy’s inequality in ℝn. Trans. Am. Math. Soc. 350, 3237–3255 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matskewich, T., Sobolevskii, P.E.: The best possible constant in generalized Hardy’s inequality for convex domain in ℝn. Nonlinear Anal. TMA 28, 1601–1610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maz’ya, V.G.: Sobolev Spaces. Springer Series in Soviet Mathematics. Springer, Berlin (1985). Translated from the Russian by T.O. Shaposhnikova

    Google Scholar 

  25. Mennucci, A.C.G.: Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: regularity. ESAIM Control Optim. Calc. Var. 10, 426–451 (2004). Errata: ESAIM Control Optim. Calc. Var. 13(2), 413–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Santaló, L.A.: Integral geometry and geometric probability. In: Encyclopedia of Mathematics and Its Applications, vol. 1. Addison-Wesley, Reading (1979)

    Google Scholar 

Download references

Acknowledgements

I would like to thank my Ph.D. supervisor, Prof. Stathis Filippas, for his essential help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Psaradakis.

Additional information

Communicated by Luis Caffarelli.

Partially supported by the State Scholarships Foundation of Greece (I.K.Y.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psaradakis, G. L 1 Hardy Inequalities with Weights. J Geom Anal 23, 1703–1728 (2013). https://doi.org/10.1007/s12220-012-9302-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-012-9302-8

Keywords

Mathematics Subject Classification (2000)

Navigation