Skip to main content
Log in

On Deformable Minimal Hypersurfaces in Space Forms

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to complete the local classification of minimal hypersurfaces with vanishing Gauss–Kronecker curvature in a 4-dimensional space form. Moreover, we give a classification of complete minimal hypersurfaces with vanishing Gauss–Kronecker curvature and scalar curvature bounded from below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asperti, A.C., Chaves, R.M.B., Sousa, L.A.M.: The Gauss–Kronecker curvature of minimal hypersurfaces in four-dimensional space forms. Math. Z. 267, 523–533 (2010)

    Article  MathSciNet  Google Scholar 

  2. Beez, R.: Zur Theorie des Krümmungsmasses von Mannigfaltigkeiten höhere Ordnung. Z. Angew. Math. Phys. 21, 373–401 (1876)

    Google Scholar 

  3. Bryant, R.L.: Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Differ. Geom. 17, 455–473 (1982)

    MATH  Google Scholar 

  4. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    MATH  Google Scholar 

  5. Cartan, E.: La déformation des hypersurfaces dans l’espace euclidien réel a n dimensions. Bull. Soc. Math. Fr. 44, 65–99 (1916)

    MathSciNet  MATH  Google Scholar 

  6. de Almeida, S.C., Brito, F.G.B.: Minimal hypersurfaces of \(\mathbb{S}^{4}\) with constant Gauss–Kronecker curvature. Math. Z. 195, 99–107 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eschenburg, J.-H., Tribuzy, R.: Branch points of conformal mappings of surfaces. Math. Ann. 279, 621–633 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Dajczer, M., Gromoll, D.: Gauss parametrizations and rigidity aspects of submanifolds. J. Differ. Geom. 22, 1–12 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Ferus, D.: On the type number of hypersurfaces in spaces of constant curvature. Math. Ann. 187, 310–316 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gulliver II, R.D., Osserman, R., Royden, H.L.: A theory of branched immersions of surfaces. Am. J. Math. 95, 750–812 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hasanis, T., Savas-Halilaj, A., Vlachos, T.: Minimal hypersurfaces with zero Gauss–Kronecker curvature. Ill. J. Math. 49, 523–529 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Hasanis, T., Savas-Halilaj, A., Vlachos, T.: Complete minimal hypersurfaces of \(\mathbb{S}^{4}\) with zero Gauss–Kronecker curvature. Math. Proc. Camb. Philos. Soc. 142, 125–132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hasanis, T., Savas-Halilaj, A., Vlachos, T.: Complete minimal hypersurfaces in the hyperbolic space ℍ4 with vanishing Gauss–Kronecker curvature. Trans. Am. Math. Soc. 359, 2799–2818 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions, 2nd edn. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  17. Killing, W.: Die nicht-Euklidischen Raumformen in Analytische Behandlung. Teubner, Leipzig (1885)

    Google Scholar 

  18. Lawson, H.B.: Complete minimal surfaces in \(\mathbb{S}^{3}\). Ann. Math. 92, 335–374 (1970)

    Article  MATH  Google Scholar 

  19. Meier, M.: Removable singularities of harmonic maps and an application to minimal submanifolds. Indiana Univ. Math. J. 35, 705–726 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Palais, R.: A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc. 22 (1957)

  22. Ramanathan, J.: Minimal hypersurfaces in \(\mathbb{S}^{4}\) with vanishing Gauss–Kronecker curvature. Math. Z. 205, 645–658 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sampson, J.H.: Some properties and applications of harmonic mappings. Ann. Sci. Éc. Norm. Super. 11, 211–228 (1978)

    MathSciNet  MATH  Google Scholar 

  24. Sbrana, V.: Sulla varieta ad (n−1)-dimensione deformabili nello spazio euclideo ad n-dimensione. Rend. Circ. Mat. Palermo 27, 1–45 (1909)

    Article  MATH  Google Scholar 

  25. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MATH  Google Scholar 

  26. Wood, C.M.: The energy of a unit vector field. Geom. Dedic. 64, 319–330 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Savas-Halilaj.

Additional information

Communicated by Alexander Isaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savas-Halilaj, A. On Deformable Minimal Hypersurfaces in Space Forms. J Geom Anal 23, 1032–1057 (2013). https://doi.org/10.1007/s12220-011-9272-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-011-9272-2

Keywords

Mathematics Subject Classification (2000)

Navigation