Skip to main content
Log in

Conformal Compactification of Asymptotically Locally Hyperbolic Metrics

  • Published:
Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the extent to which conformally compact asymptotically hyperbolic metrics may be characterized intrinsically. Building on the work of the first author in (Bahuaud, Pac. J. Math. 239(2): 231–249, 2009), we prove that decay of sectional curvature to −1 and decay of covariant derivatives of curvature outside an appropriate compact set yield Hölder regularity for a conformal compactification of the metric. In the Einstein case, we prove that the estimate on the sectional curvature implies the control of all covariant derivatives of the Weyl tensor, permitting us to strengthen our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York/London (1975). [A subsidiary of Harcourt Brace Jovanovich, Publishers]. MR MR0450957 (56 #9247)

    MATH  Google Scholar 

  2. Anderson, M.T.: Einstein metrics with prescribed conformal infinity on 4-manifolds. To appear in GAFA. Preprint available at http://arxiv.org/abs/math/0105243 (2001), 43 pp.

  3. Anderson, M.T.: Boundary regularity, uniqueness and non-uniqueness for AH Einstein metrics on 4-manifolds. Adv. Math. 179(2), 205–249 (2003). MR MR2010802 (2004m:53078)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, M.T., Schoen, R.: Positive harmonic functions on complete manifolds of negative curvature. Ann. Math. (2) 121(3), 429–461 (1985). MR MR794369 (87a:58151)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersson, L., Chruściel, P.T.: Solutions of the constraint equations in general relativity satisfying “hyperboloidal boundary conditions”. Dissertationes Math. (Rozprawy Mat.) 355, 100 (1996). MR MR1405962 (97e:58217)

    MathSciNet  Google Scholar 

  6. Bahuaud, E.: Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics. Pac. J. Math. 239(2), 231–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bahuaud, E., Marsh, T.: Hölder compactification for some manifolds with pinched negative curvature at infinity. Canad. J. Math. 6(60), 1201–1218 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bando, S., Kasue, A., Nakajima, H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97(2), 313–349 (1989). MR MR1001844 (90c:53098)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986). MR MR849427 (88b:58144)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biquard, O. (ed.): AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries. IRMA Lectures in Mathematics and Theoretical Physics, vol. 8. European Mathematical Society, Zürich (2005). Papers from the 73rd Meeting of Theoretical Physicists and Mathematicians held in Strasbourg, September 11–13, 2003. MR MR2160864 (2006b:53001)

    MATH  Google Scholar 

  11. Calabi, E., Hartman, P.: On the smoothness of isometries. Duke Math. J. 37, 741–750 (1970). MR MR0283727 (44 #957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chow, B., Knopf, D.: The Ricci Flow: An Introduction. Mathematical Surveys and Monographs, vol. 110. American Mathematical Society, Providence (2004). MR MR2061425 (2005e:53101)

    MATH  Google Scholar 

  13. Chruściel, P.T., Delay, E., Lee, J.M., Skinner, D.N.: Boundary regularity of conformally compact Einstein metrics. J. Differ. Geom. 69(1), 111–136 (2005). MR MR2169584 (2007g:53042)

    MATH  Google Scholar 

  14. Chruściel, P.T., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231–264 (2003). MR MR2038048 (2005d:53052)

    Article  Google Scholar 

  15. DeTurck, D.M.: Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 18(1), 157–162 (1983). MR MR697987 (85j:53050)

    MathSciNet  MATH  Google Scholar 

  16. DeTurck, D.M., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. (4) 14(3), 249–260 (1981). MR MR644518 (83f:53018)

    MathSciNet  MATH  Google Scholar 

  17. Eastham, M.S.P.: The Asymptotic Solution of Linear Differential Systems. London Mathematical Society Monographs. New Series, vol. 4. The Clarendon Press/Oxford University Press, New York (1989). Applications of the Levinson theorem, Oxford Science Publications. MR MR1006434 (91d:34001)

    MATH  Google Scholar 

  18. Eberlein, P., O’Neill, B.: Visibility manifolds. Pac. J. Math. 46, 45–109 (1973). MR MR0336648 (49 #1421)

    MathSciNet  MATH  Google Scholar 

  19. Fefferman, C., Graham, C.R.: Conformal invariants. Astérisque (1985), no. Numero Hors Serie, pp. 95–116, The Mathematical Heritage of Élie Cartan (Lyon, 1984). MR MR837196 (87g:53060)

  20. Gicquaud, R.: De l’équation de prescription de courbure scalaire aux équations de contrainte en relativité générale sur une variété asymptotiquement hyperbolique. J. Math. Pures Appl. 94(2), 200–227 (2010). doi:10.1016/j.matpur.2010.03.011. Preprint available at http://arxiv.org/abs/0802.3279 (2008), 41 pp.

    Article  MathSciNet  MATH  Google Scholar 

  21. Graham, C.R., Lee, J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186–225 (1991). MR MR1112625 (92i:53041)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hebey, E., Herzlich, M.: Harmonic coordinates, harmonic radius and convergence of Riemannian manifolds. Rend. Mat. Appl. (7) 17(4), 569–605 (1997,1998). MR MR1620864 (99f:53039)

    MathSciNet  Google Scholar 

  23. Herzlich, M.: Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries. IRMA Lect. Math. Theor. Phys., vol. 8, pp. 103–121. Eur. Math. Soc., Zürich (2005). MR MR2160869 (2006k:53052)

    Chapter  Google Scholar 

  24. Jost, J.: Riemannian Geometry and Geometric Analysis, 4th edn. Universitext. Springer, Berlin (2005). MR MR2165400 (2006c:53002)

    MATH  Google Scholar 

  25. Lee, J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds. Mem. Am. Math. Soc. 183, 864 (2006). vi+83 MR MR2252687 (2007m:53047)

    Google Scholar 

  26. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171. Springer, New York (1998). MR MR1480173 (98m:53001)

    MATH  Google Scholar 

  27. Shi, Y., Tian, G.: Rigidity of asymptotically hyperbolic manifolds. Commun. Math. Phys. 259(3), 545–559 (2005). MR MR2174416 (2006g:53053)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bahuaud.

Additional information

Communicated by John M. Lee.

E. Bahuaud was partially supported by an ANR Postdoctoral grant, project GeomEinstein 06-BLAN-0154. R. Gicquaud partially supported by ANR project GeomEinstein 06-BLAN-0154.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahuaud, E., Gicquaud, R. Conformal Compactification of Asymptotically Locally Hyperbolic Metrics. J Geom Anal 21, 1085–1118 (2011). https://doi.org/10.1007/s12220-010-9179-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-010-9179-3

Keywords

Mathematics Subject Classification (2000)

Navigation