Skip to main content
Log in

Theoretical Analysis of Cryogenic Fluid Evaporation in Sintered Microporous Structures

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Evaporation in microstructures has been proven to be a heat transfer enhancement compared with evaporation on flat surfaces due to the thin films formed in the porous or grooved surfaces. To investigate the evaporation characteristics in sintered porous wicks for cryogenic loop heat pipes, a more realistic geometric model to characterize the porous skeleton is developed. Then, a mathematical model considering the Marangoni effect and slip velocity effect to predict the liquid–vapor interface is built. The evaporation interface can be divided into the thin-film region and intrinsic meniscus region. A new solution method calculating from the intersection of these two regions is established and validated, and the initial boundary conditions are not dependent on the contact angle whose value is small and ambiguous for cryogenic fluids. Then the evaporation characteristics of the thin-film region are discussed. About 40% of the temperature drop occurs in the thin-film region, and the evaporation thermal resistance should be considered in this region. Finally, the parametric analysis is conducted to study the effects of superheat, pressure difference at the interface, accommodation coefficient and pore radius on the interface profile and evaporation heat transfer process in sintered microporous structures. The liquid–vapor interface recedes with the superheat increasing and the mean heat transfer coefficient of the interface decreases. With the increase of the pressure difference at the interface, the liquid–vapor interface recedes and the mean heat transfer coefficient decreases. The mean heat transfer coefficient increases with the accommodation coefficient despite the coverage of the liquid–vapor interface reducing and small pores would be helpful to enhance heat transfer in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A:

Dispersion constant (J)

hfg:

Latent heat (J/kg)

K:

Curvature (m-1)

\(\overline{M }\) :

Molecular weight (kg/mol)

pc:

Capillary pressure (Pa)

pd:

Disjoining pressure (Pa)

q:

Heat transfer rate (W)

\(\overline{R }\) :

Universal gas constant (J/mol·K)

r:

Polar radius coordinate (m)

T:

Temperature (K)

u:

Velocity (m/s)

x:

X-coordinate (m)

y:

Y-coordinate (m)

β:

Slip coefficient (m)

δ:

Thickness (m)

ρ:

Density (kg/m3)

θ:

Angular coordinate (-)

μ:

Dynamic viscosity (N·s/m2)

σ:

Surface tension (N/m)

\(\widehat{\sigma }\) :

Accommodation coefficient (-)

λ:

Thermal conductivity (W/m·K)

c:

Conduction

e:

Evaporation

l:

Liquid

lv:

Liquid-vapor interface

sat:

Saturation

v:

Vapor

w:

Wall.

References

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 program) under contract No. 613322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wang.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The liquid velocity profile can be written as,

$$u\left(r,\theta \right)=\frac{r}{2\mu }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }-\frac{R\;\mathrm{ln}\left(R-r\;\mathrm{cos}\;\theta \right)}{2\;\mathrm{cos}\;\theta \mu }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }\text{+}\frac{{C}_{1}}{R}\mathrm{ln}\left(\frac{r}{R-r\;\mathrm{cos}\;\theta }\right)+{C}_{2}$$
(33)

Then, the first derivative of the liquid velocity can be expressed as,

$$\frac{\partial u}{\partial r}=\frac{1}{2\mu }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }+\frac{R}{2\mu }\frac{1}{R-r\;\mathrm{cos}\;\theta }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }\text{+}\frac{{C}_{1}}{r}\frac{1}{R-r\;\mathrm{cos}\;\theta }$$
(34)

The boundary conditions are as follows.

$$\left\{\begin{array}{c}{\left.u\right|}_{r={r}_{0}}={\left.\beta \frac{\partial u}{\partial r}\right|}_{r={r}_{0}}\\ {\left.\frac{\partial u}{\partial r}\right|}_{r={r}_{0}+\delta }=\frac{1}{\mu }\frac{{\text{d}}\sigma }{r{\text{d}}\theta }\end{array}\right.$$
(35)

Substitute Eqs. (33) and (34) into Eq. (35),

$$\left\{\begin{array}{l}\frac{{r}_{0}}{2\mu }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }-\frac{R\;\mathrm{ln}\;\left(R-{r}_{0}\mathrm{cos}\;\theta \right)}{2\;\mathrm{cos}\;\theta \mu }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }\text{+}\frac{{C}_{1}}{R}ln\left(\frac{{r}_{0}}{R-{r}_{0}\mathrm{cos}\theta }\right)+{C}_{2}\\ =\beta \left(\frac{1}{2\mu }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }+\frac{R}{2\mu }\frac{1}{R-{r}_{0}\mathrm{cos}\;\theta }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }\text{+}\frac{{C}_{1}}{{r}_{0}}\frac{1}{R-{r}_{0}\mathrm{cos}\;\theta }\right)\\ \frac{1}{2\mu }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }+\frac{R}{2\mu }\frac{1}{R-\left({r}_{0}+\delta \right)\mathrm{cos}\;\theta }\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }\text{+}\frac{{C}_{1}}{{r}_{0}+\delta }\frac{1}{R-\left({r}_{0}+\delta \right)\mathrm{cos}\;\theta }=\frac{1}{\mu }\frac{{\text{d}}\sigma }{\left({r}_{0}+\delta \right){\text{d}}\theta }\end{array}\right.$$
(36)

According to the second equation in Eq. (36), C1 can be written as,

$${C}_{1}=\left(\begin{array}{c}-\frac{1}{2\mu }\left({r}_{0}+\delta \right)\left(2R-\left({r}_{0}+\delta \right)\mathrm{cos}\;\theta \right)\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }\\ \text{+}\frac{1}{\mu }\left(R-\left({r}_{0}+\delta \right)\mathrm{cos}\;\theta \right)\frac{{\text{d}}\sigma }{{\text{d}}\theta }\end{array}\right)$$
(37)

Then, take the expression of C1 into the first equation in Eq. (36), and C2 can be solved:

$$\begin{array}{l}{C}_{2}=\left(\begin{array}{c}\beta \frac{1}{2\mu }\frac{2R-{r}_{0}\mathrm{cos}\;\theta }{R-{r}_{0}\mathrm{cos}\;\theta }-\frac{1}{2}\frac{1}{\mu }{r}_{0}+\frac{R}{2\;\mathrm{cos}\;\theta }\frac{1}{\mu }ln\left(R-{r}_{0}\mathrm{cos}\;\theta \right)\\ -\left(\begin{array}{c}\beta \frac{1}{{r}_{0}\left(R-{r}_{0}\mathrm{cos}\;\theta \right)}\\ -\frac{1}{R}ln\left(\frac{{r}_{0}}{R-{r}_{0}\mathrm{cos}\;\theta }\right)\end{array}\right)\frac{1}{2\mu }\left({r}_{0}+\delta \right)\left(2R-\left({r}_{0}+\delta \right)\mathrm{cos}\;\theta \right)\end{array}\right)\frac{{\text{d}}{p}_{l}}{{\text{d}}\theta }\\ \text{+}\left(\beta \frac{1}{{r}_{0}\left(R-{r}_{0}\mathrm{cos}\;\theta \right)}-\frac{1}{R}\mathrm{ln}\left(\frac{{r}_{0}}{R-{r}_{0}\mathrm{cos}\;\theta }\right)\right)\frac{1}{\mu }\left(R-\left({r}_{0}+\delta \right)\mathrm{cos}\;\theta \right)\frac{{\text{d}}\sigma }{{\text{d}}\theta }\end{array}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Qi, C., Wang, W. et al. Theoretical Analysis of Cryogenic Fluid Evaporation in Sintered Microporous Structures. Microgravity Sci. Technol. 34, 14 (2022). https://doi.org/10.1007/s12217-022-09932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09932-9

Keywords

Navigation