Skip to main content
Log in

Correlation Between Viscosity and Local Atomic Structure in Liquid Zr56Co28Al16 Alloy

  • Original Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Temperature-dependent viscosity and its relationship with local atomic packing structure of a liquid Zr56Co28Al16 alloy have been investigated by using an electromagnetic levitation device on board a parabolic flight airplane, together with ab initio molecular dynamics simulations. It is found that viscosity inversely correlates with the fraction of ‘loose’ atoms having larger free volume, indicating that the temperature-dependent viscosity during cooling is statistically related with the fraction of close packing atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

reproduced from the literature (Yuan et al. 2015)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B. 50(24), 17953–17979 (1994)

    Article  Google Scholar 

  • Chen, L.Y., Mohr, M., Wunderlich, R.K., Fecht, H.J., Wang, X.D., Cao, Q.P., Zhang, D. X., Yang, Y., Jiang, J.Z.: Correlation of viscosity with atomic packing in Cu50Zr50 melt. J. Mol. Liq. 293 (2019)

  • Eckert, J., Kubler, A., Reger-Leonhard, A., Gebert, A., Heilmaier, M.: Glass transition, viscosity of the supercooled liquid and crystallization behaviour of Zr-Al-Cu-Ni-Fe metallic glasses. Mater. T. JIM. 41(11), 1415–1422 (2000)

    Article  Google Scholar 

  • Herlach, D.M., Cochrane, R.F., Egry, I., Fecht, H.J., Greer, A.L.: Containerless processing in the study of metallic melts and their solidification. Int. Mater. Rev. 38(6), 273–347 (1993)

    Article  Google Scholar 

  • Hoover, W.G.: Canonical dynamics - Equilibrium phase-space distributions. Phys. Rev. A. 31(3), 1695–1697 (1985)

    Article  Google Scholar 

  • Ishikawa, T., Paradis, P. F., Okada, J. T., Watanabe, Y.: Viscosity measurements of molten refractory metals using an electrostatic levitator. Meas. Sci. Technol. 23(2) (2012)

  • Jakse, N., Pasturel, A.: Liquid Aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics. Sci. Rep-Uk. 3 (2013)

  • Jakse, N., Wax, J. F., Pasturel, A.: Transport properties of liquid nickel near the melting point: An ab initio molecular dynamics study. J. Chem. Phys. 126(23) (2007)

  • Kondo, T., Muta, H., Kurosaki, K., Kargl, F., Yamaji, A., Furuya, M., Ohishi, Y.: Density and viscosity of liquid ZrO2 measured by aerodynamic levitation technique. Heliyon 5(7) (2019)

  • Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996a)

    Article  Google Scholar 

  • Kresse, G., Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169–11186 (1996b)

    Article  Google Scholar 

  • Kubler, A., Eckert, J., Gebert, A., Schultz, L.: Influence of oxygen on the viscosity of Zr-Al-Cu-Ni metallic glasses in the undercooled liquid region. J. Appl. Phys. 83(6), 3438–3440 (1998)

    Article  Google Scholar 

  • Lamb, H.: Hydrodynamics, Cambridge University Press, Cambridge ISBN: 0 521 05515 6, 450 (1975)

  • Lohöfer, G.: High-resolution inductive measurement of electrical resistivity and density of electromagnetically levitated liquid metal droplets. Rev. Sci. Instrum. 89(12) (2018)

  • Madison, J., Spowart, J., Rowenhorst, D., Aagesen, L.K., Thornton, K., Pollock, T.M.: Modeling fluid flow in three-dimensional single crystal dendritic structures. Acta Mater. 58(8), 2864–2875 (2010)

    Article  Google Scholar 

  • Mohr, M., Wunderlich, R.K., Koch, S., Galenko, P.K., Gangopadhyay, A.K., Kelton, K.F., Jiang, J.Z., Fecht, H.J.: Surface tension and viscosity of Cu50Zr50 measured by the oscillating drop technique on board the International Space Station. Microgravity Sci. Tec. 31(2), 177–184 (2019)

    Article  Google Scholar 

  • Nosé, S.: A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81(1), 511–519 (1984)

    Article  Google Scholar 

  • Novakovic, R., Mohr, M., Giuranno, D., Ricci, E., Brillo, J., Wunderlich, R., Egry, I., Plevachuk, Y., Fecht, H.J.: Surface properties of liquid Al-Ni Alloys: Experiments Vs theory. Microgravity Sci. Tec. 32(6), 1049–1064 (2020)

    Article  Google Scholar 

  • Ohishi, Y., Kurokawa, K., Sun, Y. F., Muta, H.: Thermophysical properties of molten Zr1-xOx (x=0.1, 0.2) measured by electrostatic levitation. J. Nucl. Mater. 528 (2020)

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  • Ropo, M., Akola, J., Jones, R. O.: Collective excitations and viscosity in liquid Bi. J. Chem. Phys. 145(18) (2016)

  • Starr, F. W., Sastry, S., Douglas, J. F., Glotzer, S. C.: What do we learn from the local geometry of glass-forming liquids? Phys. Rev. Lett. 89(12) (2002)

  • Su, Y., Mohr, M., Wunderlich, R. K., Wang, X. D., Cao, Q. P., Zhang, D. X., Yang, Y., Fecht, H. J., Jiang, J. Z.: The relationship between viscosity and local structure in liquid zirconium via electromagnetic levitation and molecular dynamics simulations. J. Mol. Liq. 298 (2020)

  • Tan, J., Zhang, Y., Stoica, M., Kuhn, U., Mattern, N., Pan, F.S., Eckert, J.: Study of mechanical property and crystallization of a ZrCoAl bulk metallic glass. Intermetallics 19(4), 567–571 (2011)

    Article  Google Scholar 

  • Wada, T., Qin, F.X., Wang, X.M., Yoshimura, M., Inoue, A., Sugiyama, N., Ito, R., Matsushita, N.: Formation and bioactivation of Zr-Al-Co bulk metallic glasses. J. Mater. Res. 24(9), 2941–2948 (2009)

    Article  Google Scholar 

  • Wada, T., Zhang, T., Inoue, A.: Formation, thermal stability and mechanical properties in Zr-Al-Co bulk glassy alloys. Mater. Trans. 43(11), 2843–2846 (2002)

    Article  Google Scholar 

  • Yu, K.M., Cao, Q.P., Yu, Q., Wang, X.D., Zhang, D.X., Qu, S.X., Jiang, J.Z.: Glass forming ability and bending plasticity evolutions in Zr-Co-Al bulk metallic glasses and their structural origin. J. Non-Cryst. Solids. 488, 52–62 (2018)

    Article  Google Scholar 

  • Yuan, C. C., Yang, F., Kargl, F., Holland-Moritz, D., Simeoni, G. G., Meyer, A.: Atomic dynamics in Zr-(Co,Ni)-Al metallic glass-forming liquids. Phys. Rev. B. 91(21) (2015)

  • Zhang, T., Inoue, A., Masumoto, T.: Amorphous Zr-Al-Tm (Tm = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Mater. T. JIM. 32(11), 1005–1010 (1991)

    Article  Google Scholar 

  • Zhang, H., Srolovitz, D.J., Douglas, J.F., Warren, J.A.: Grain boundaries exhibit the dynamics of glass-forming liquids. P. Natl. Acad. Sci. USA 106(19), 7735–7740 (2009)

    Article  Google Scholar 

  • Zhang, H., Xu, Q.Y., Liu, B.C.: Numerical simulation and optimization of directional solidification process of single crystal superalloy casting. Materials 7(3), 1625–1639 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work at the Zhejiang University in China was supported by the National Key Research and Development Program of China (2017YFA0403400), the National Natural Science Foundation of China (11975202 and U1832203), the international cooperation project of China Manned Space Program, and the Fundamental Research Funds for the Central Universities are gratefully acknowledged. The computer resources at National Supercomputer Centers in Tianjin are also gratefully acknowledged. M. M., Y. D. and H.-J. F. acknowledge the continued support by the German Space Agency DLR under contract 50WM1759 and the support by the European Space Agency ESA under contract AO-2009-1020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. D. Wang, Z. W. Dai or J. Z. Jiang.

Ethics declarations

Conflicts of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.L., Dong, Y., Mohr, M. et al. Correlation Between Viscosity and Local Atomic Structure in Liquid Zr56Co28Al16 Alloy. Microgravity Sci. Technol. 34, 10 (2022). https://doi.org/10.1007/s12217-022-09925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09925-8

Keywords

Navigation