Skip to main content
Log in

Experimental Study on Distribution Characteristics of Condensate Droplets Under Ultrasonic Vibration

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

This paper studied the effect of ultrasound on distribution characteristics of condensate droplets on a vertical metal surface. The surface was made of aluminum and coated with PVC film to obtain durable condensate droplets. Visualization of the condensation process was carried out under the action of ultrasonic vibration with a constant frequency of 20 kHz. The effects of ultrasonic power on surface coverage of condensate droplets, first shedding time of condensate droplets, total number of shedding, heat flux and condensation heat transfer coefficient were analyzed. Furthermore, the mechanism of ultrasonic vibration on accelerating the shedding of condensate droplets was discussed. The results indicated that the shedding of condensate droplets was accelerated by ultrasound compared with those without ultrasound. In addition, the shedding period of condensate droplets was decreased with the increase of ultrasonic power. Contrarily, the heat flux and the condensation heat transfer coefficient were increased with the increase of ultrasonic power. The maximum enhancement ratio of heat transfer coefficient reached 2.67 compared with that without applying ultrasound. This study shows that ultrasound has a good application prospect in strengthening condensation heat transfer, particularly for space applications in microgravity environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bohdal, T., Matysko, R.: Condensation of a refrigeration medium in the presence of an inert gas. Appl. Therm. Eng. 26(16), 1942–1950 (2006)

    Article  Google Scholar 

  • Bortolin, S., Achkar, G.E., Kostoglou, M., et al.: Experimental investigations on condensation in the framework of Enhanced Condensers in Microgravity (ENCOM-2) project. Microgravity Sci. Technol. 26(5), 335–349 (2014)

    Article  Google Scholar 

  • Cai, X., Niu, F., Ning, T., Wu, G., et al.: An investigation of wet steam flow in a 300 MW direct air-cooling steam turbine. Part 3: Heterogeneous/homogeneous condensation. Proc. Instit. Mech. Eng., Part A: J. Power Energy 224(4), 583–589 (2010)

    Article  Google Scholar 

  • Chatterjee, A., Derby, M.M., Peles, Y., et al.: Enhancement of condensation heat transfer with patterned surfaces. Int. J. Heat Mass Transf. 71(4), 675–681 (2014)

    Article  Google Scholar 

  • Chen, C.H., Cai, Q., Tsai, C.: Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90(17), 53 (2007)

    Google Scholar 

  • Chu, F., Wu, X., Ma, Q.: Condensate droplet growth on surfaces with various wettability. Appl. Therm. Eng. 115, 1101–1108 (2017)

    Article  Google Scholar 

  • Dietz, C., Rykaczewski, K., Fedorov, A.G.: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl. Phys. Lett. 97(3), 621 (2010)

    Article  Google Scholar 

  • DJ Preston, D.L., Mafra, N., et al.: Miljkovic scalable graphene coatings for enhanced condensation heat transfer. Nano Lett. 15(5), 2902–2909 (2015)

    Article  Google Scholar 

  • Feng, J., Pang, Y., Qin, Z., et al.: Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others. ACS Appl. Mater. Interfaces 4(12), 6618–6625 (2012)

    Article  Google Scholar 

  • Glushchuk, A., Marchuk, I.V., Kabov, O.A.: Experimental study of film condensation of FC-72 vapour on Disk-Shaped fin. Microgravity Sci. Technol. 23(1), 65–74 (2011)

    Article  Google Scholar 

  • Hong, K., Webb, R.L.: Performance of dehumidifying heat exchangers with and without wetting coatings. J. Heat Transf. 121(4), 1018–1027 (1999)

    Article  Google Scholar 

  • Jin, G., Lee, K.S., Seo, B.: Characteristics of condensation formation on the surfaces of air conditioning indoor units. Appl. Therm. Eng. 91, 345–353 (2015)

    Article  Google Scholar 

  • Kline, S.J., Mcclintock, F.A.: Describing uncertainties in single-sample experiments. Mech. Eng. 75(1), 3–8 (1953)

    Google Scholar 

  • Koch, G., Zhang, D.C., Leipertz, A.: Condensation of steam on the surface of hard coated copper discs. Heat & Mass Transfer 32(3), 149–156 (1997)

    Article  Google Scholar 

  • Lan, Z., Ma, X.H., Wang, S.F., et al.: Effects of surface free energy and nanostructures on dropwise condensation. Chem. Eng. J. 156(3), 546–552 (2010)

    Article  Google Scholar 

  • Li, D., Chen, Z.: Experimental study on instantaneously shedding frozen water droplets from cold vertical surface by ultrasonic vibration. Exp. Thermal Fluid Sci. 53(2), 17–25 (2014)

    Article  MathSciNet  Google Scholar 

  • Li, P., Chen, Z., Shi, J.: Numerical Study on the Effects of Gravity and Surface Tension on Condensation Process in Square Minichannel. Microgravity Sci. Technol. 30(1-2), 19–24 (2018)

    Article  Google Scholar 

  • Lo, C.W., Wang, C.C., Lu, M.C.: Scale effect on dropwise condensation on superhydrophobic surfaces. ACS Appl. Mater. Interfaces 6(16), 14353–14359 (2014)

    Article  Google Scholar 

  • Ma, X.H., Wang, S.F., Lan, Z., et al.: Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas. J. Heat Transf. 134(2), 162–168 (2012)

    Article  Google Scholar 

  • Ma, X., Rose, J.W., Xu, D., et al.: Advances in dropwise condensation heat transfer: Chinese research. Chem. Eng. J. 78(2-3), 87–93 (2000)

    Article  Google Scholar 

  • Meakin, P.: Droplet deposition growth and coalescence. Rep. Prog. Phys. 55(2), 157–240 (1999)

    Article  Google Scholar 

  • Miljkovic, N., Enright, R., Nam, Y., et al.: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13(1), 179 (2013)

    Article  Google Scholar 

  • Omidvarborna, H., Dasht-E-Bayz, M., Mehrabani-Zeinabad, A., et al.: Effect of applied EHD on in-tube condensation of R-134a within an assembled experimental rig including a laboratory heat exchanger. Exp. Thermal Fluid Sci. 58(10), 112–120 (2014)

    Article  Google Scholar 

  • Quéré, D.: Rough ideas on wetting. Phys. A: Stat. Mech. Appl. 313(1-2), 32–46 (2002)

    Article  Google Scholar 

  • Rose, J.W.: Dropwise condensation theory and experiment: a review. Proc. Instit. Mech. Eng., Part A: J. Power Energy 216(2), 115–128 (2005)

    Article  Google Scholar 

  • Rykaczewski, K., Scott, J.H.: Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. Acs Nano 5(7), 5962–5968 (2011)

    Article  Google Scholar 

  • Seo, D., Lee, C., Nam, Y.: Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Langmuir ACS J. Surfaces Colloids 30(51), 15468–15476 (2014)

    Article  Google Scholar 

  • Torresin, D., Tiwari, M.K., Col, D.D.: Flow condensation on copper-based nanotextured superhydrophobic surfaces. Langmuir ACS J. Surfaces Colloids 29(2), 840–848 (2013)

    Article  Google Scholar 

  • Viovy, J.L., Beysens, D., Knobler, C.M.: Scaling description for the growth of condensation patterns on surfaces. Phys. Rev. A General Phys. 37(12), 4965–4970 (1988)

    Article  Google Scholar 

  • Zhu, J., Luo, Y., Tian, J., et al.: Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS Appl. Mater. Interfaces 7(20), 10660 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by National Natural Science Foundation of China (51606037), China’s Manned Space Program (TZ-1) and Natural Science Foundation of Jiangsu Province (BK2016068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqian Chen.

Additional information

This article belongs to the Topical Collection: Approaching the Chinese Space Station - Microgravity Research in China

Guest Editors: Jian-Fu Zhao, Shuang-Feng Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shi, J., Xu, B. et al. Experimental Study on Distribution Characteristics of Condensate Droplets Under Ultrasonic Vibration. Microgravity Sci. Technol. 30, 737–746 (2018). https://doi.org/10.1007/s12217-018-9616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9616-7

Keywords

Navigation