Skip to main content
Log in

Existence Conditions and Formation Process of Second Type of Spiral Loop Particle Accumulation Structure (SL-2 PAS) in Half-zone Liquid Bridge

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

We focus on unique phenomena known as particle accumulation structure (PAS), especially on the conditions of the existence for second-type spiral loop PAS (SL-2 PAS) and on their formation processes under normal gravity. We investigate the existence conditions as functions the aspect ratio of the liquid bridge and the Marangoni number, the intensity of the thermocapillary effect. We discuss the differences among SL-1 PAS, SL-2 PAS and the flow field without PAS through observation of the solid-like structures of the PAS in a rotating frame of reference with the hydrothermal wave, and through monitoring of the surface temperature by infrared camera. We evaluate the formation time of PAS by employing a modified accumulation measure by considering the effect of the particles’ size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe, Y., Ueno, I., Kawamura, H.: Effect of shape of HZ liquid bridge on particle accumulation Structure (PAS). Microgravity Sci. Technol. 19, 84–86 (2007)

    Article  Google Scholar 

  • Gotoda, M., Sano, T., Kaneko, T., Ueno, I.: Evaluation of existence region and formation time of particle accumulation structure (PAS) in half-zone liquid bridge. Eur. Phys. J. Special Topics 224(2), 299–307 (2015)

    Article  Google Scholar 

  • Gotoda, M., Toyama, A., Ishimura, M., Sano, T., Suzuki, M., Kaneko, T., Ueno, I.: Experimental study on dynamics of finite-size particles in coherent structures induced by thermocapillary effect in deformable liquid bridge. Phys. Rev. Fluids (under review)

  • Hirata, A., Nishizawa, S., Sakurai, M.: Experimental results of oscillatory Marangoni convection in a liquid bridge under normal gravity. J. Jpn. Soc. Microgravity Apply 14, 122–129 (1997)

    Google Scholar 

  • Hofmann, E., Kuhlmann, H.C.: Particle accumulation on periodic orbits by repeated free surface collisions. Phys. Fluids 23(7), 072106 (2011)

    Article  Google Scholar 

  • Kamotani, Y., Wang, L., Hatta, S., Wang, A., Yoda, S.: Free surface heat loss effect on oscillatory themocapillary flow in liquid bridges of high Prandtl number fluids. Int. J. Heat Mass Transf. 46(17), 3211–3220 (2003)

    Article  Google Scholar 

  • Kuhlmann, H.C., Mukin, R.E., Sano, T., Ueno, I.: Structure and dynamics of particle-accumulation in thermocapillary liquid bridges. Fluid Dyn. Res. 46, 041421 (2014)

    Article  Google Scholar 

  • Kuhlmann, H.C., Muldoon, F.H.: Particle-accumulation structures in periodic free-surface flows: inertia versus surface collisions. Phys. Rev. E 85, 046310 (2012)

    Article  Google Scholar 

  • Kuhlmann, H.C., Muldoon, F.H.: On the different manifestations of particle accumulation structures (PAS) in thermocapillary flows. Eur. Phys. J. Special Topics 219, 59–69 (2013)

    Article  Google Scholar 

  • Matsugase, T., Ueno, I., Nishino, K., Ohnishi, M., Sakurai, M., Matsumoto, S., Kawamura, H.: Transition to chaotic thermocapillary convection in a half zone liquid bridge. Int. J. Heat Mass Transf. 89, 903–912 (2015)

    Article  Google Scholar 

  • Melnikov, D.E., Pushkin, D.O., Shevtsova, V.M.: Synchronization of finite-size particles by a traveling wave in a cylindrical flow. Phys. Fluids 25, 092108 (2013)

    Article  Google Scholar 

  • Melnikov, D.E., Watanabe, T., Matsugase, T., Ueno, I., Shevtsova, V.: Experimental study on formation of particle accumulation structures by a thermocapillary flow in a deformable liquid column. Microgravity Sci. Technol. 26, 365–374 (2014)

  • Muehlner, K.A., Schatz, M.F., Petrov, V., McCormick, W.D., Swift, J.B., Swinney, H.L.: Observation of helical traveling-wave convection in a liquid bridge. Phys. Fluids 9, 1850–1852 (1997)

    Article  Google Scholar 

  • Mukin, R.V., Kuhlmann, H.C.: Topology of hydrothermal waves in liquid bridges and dissipative structures of transported particles. Phys. Rev. E 88, 053016 (2013)

    Article  Google Scholar 

  • Muldoon, F.H., Kuhlmann, H.C.: Coherent particulate structures by boundary interaction of small particles in confined periodic flows. Phys. D: Nonlinear Phenomena 253, 40–65 (2013)

    Article  MathSciNet  Google Scholar 

  • Muldoon, F.H., Kuhlmann, H.C.: Different particle-accumulation structures arising from particle–boundary interactions in a liquid bridge. Int. J. Multiphase. Flow 59, 145–159 (2014)

    Article  Google Scholar 

  • Muldoon, F.H., Kuhlmann, H.C.: Origin of particle accumulation structures in liquid bridges: Particle–boundary-interactions versus inertia. Phys. Fluids 28, 073305 (2016)

    Article  Google Scholar 

  • Niigaki, Y., Ueno, I.: Formation of particle accumulation structure (PAS) in Half-Zone liquid bridge under an effect of Thermo-Fluid flow of ambient gas, transactions of the Japan soc. For aeronautical and space sci. Aerospace tech. Japan10 Ph33-Ph37 (2012)

  • Pushkin, D.O., Melnikov, D.E., Shevtsova, V.M.: Ordering of small particles in one-dimensional coherent structures by time-periodic flows. Phys. Rev. Lett. 106, 234501 (2011)

    Article  Google Scholar 

  • Sato, F., Ueno, I., Kawamura, H., Nishino, K., Matsumoto, S., Ohnishi, M., Sakurai, M.: Hydrothermal wave instability in a high-Aspect-Ratio Liquid Bridge of Pr 200. Microgravity Sci Technol. 25.1, 43–58 (2013)

    Article  Google Scholar 

  • Schwabe, D., Hintz, P., Frank, S.: New features of thermocapillary convection in floating zones revealed by tracer particle accumulation structures (PAS). Microgravity Sci. Technol. 9, 163–183 (1996)

    Google Scholar 

  • Schwabe, D., Mizev, A.I., Udhayasankar, M., Tanaka, S.: Formation of dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges. Phys. Fluids 19(7), 072102 (2007)

    Article  MATH  Google Scholar 

  • Schwabe, D., Mizev, A., Tanaka, S., Kawamura, H.: Particle accumulation structures in time-dependent thermocapillary flow in a liquid bridge under microgravity. Microgravity Sci. Technol. 18(3-4), 117–127 (2006)

    Article  Google Scholar 

  • Tanaka, S., Kawamura, H., Ueno, I., Schwabe, D.: Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge. Phys. Fluids 18, 067103 (2006)

    Article  Google Scholar 

  • Ueno, I., Kawasaki, H., Watanabe, T., Motegi, K., Kaneko, T.: Hydrothermal-wave instability and resultant flow patterns induced by thermocapillary effect in a half-zone liquid bridge of high aspect ratio, 15th Int. Heat Transfer Conf. (IHTC15), paper #: IHTC15-9489 (12 pages), doi:10.1615/IHTC15.fcv.009489 (2014)

  • Ueno, I., Kawazoe, A., Enomoto, H.: Effect of ambient-gas forced flow on oscillatory thermocapillary convection of half-zone liquid bridge. Fluid Dynamics Materials Processing 6, 99–108 (2010)

    Google Scholar 

  • Ueno, I., Tanaka, S., Kawamura, H.: Oscillatory and chaotic thermocapillary convection in a half-zone liquid bridge. Phys. Fluids 15(2), 408–416 (2003)

    Article  MATH  Google Scholar 

  • Wang, A., Kamotani, Y., Yoda, S.: Oscillatory thermocapillary flow in liquid bridges of high Prandtl number fluid with free surface heat gain. Int. J. Heat Mass Transf. 50(21–22), 4195–4205 (2007)

    Article  MATH  Google Scholar 

  • Wanschura, M, Shevtsova, V.M., Kuhlmann, H.C., Rath, H.J.: Convective instability mechanisms in thermocapillary liquid bridges. Phys. Fluids 7, 912–925 (1995)

    Article  MATH  Google Scholar 

  • Watanabe, T., Melnikov, D.E., Matsugase, T., Shevtsova, V.M., Ueno, I.: The stability of a thermocapillary-buoyant flow in a liquid bridge with heat transfer through the interface. Microgravity Sci. Technol. 26.1, 17–28 (2014)

    Article  Google Scholar 

  • Yano, T., Maruyama, K., Matsunaga, T., Nishino, K.: Effect of ambient gas flow on the instability of Marangoni convection in liquid bridges of various volume ratios. Int. J. Heat Mass Transf. 99, 182–191 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

A part of this study was financially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (B) (project number 24360078) and Grant-in-Aid for Scientific Research (C) (project number 15K05809)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ueno.

Additional information

This article belongs to the Topical Collection: Advances in Gravity-related Phenomena in Biological, Chemical and Physical Systems

Guest Editors: Valentina Shevtsova, Ruth Hemmersbach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toyama, A., Gotoda, M., Kaneko, T. et al. Existence Conditions and Formation Process of Second Type of Spiral Loop Particle Accumulation Structure (SL-2 PAS) in Half-zone Liquid Bridge. Microgravity Sci. Technol. 29, 263–274 (2017). https://doi.org/10.1007/s12217-017-9544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9544-y

Keywords

Navigation