Skip to main content
Log in

Chronoamperometric Study of Ammonia Oxidation in a Direct Ammonia Alkaline Fuel Cell under the Influence of Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

This is a study of the chronoamperometric performance of the electrochemical oxidation of ammonia in an alkaline fuel cell for space applications. Under microgravity the performance of a fuel cell is diminished by the absence of buoyancy since nitrogen gas is produced. The following catalysts were studied: platinum nanocubes of ca. 10nm, platinum nanocubes on carbon Vulcan ™ and platinum on carbon nanoonion support of ca. 10nm. These nanomaterials were studied in order to search for catalysts that may reduce or counter the loss of ammonia oxidation current densities performance under microgravity conditions. Chronoamperometries at potential values ranging from 0.2 V to 1.2V vs. cathode potential (breathing Air/300ml/min/82737 Pa) in 1.0 M NH4OH (30ml/min in anode) were done during over 30 parabolas in NASA’s C9 airplane The Weightless Wonder in January 2016 from Ellington Field Houston. The current densities at 15s in the chronoamperometry experiments showed diminishing values under microgravity and in some cases improvements of up to 92%, for Pt-carbon nanoonions, and over 70% for the three catalysts versus ground at potentials ranging from 0.2 to 0.4V after 5 minutes of chronoamperometric conditions. At higher potentials, 1.0V or higher, Pt nanocubes and Pt-carbon nanoonions showed enhancements of up to 32% and 24%, respectively. At these higher potentials we will have a contribution of oxygen evolution. The changes in current behavior are attributed to the sizes of the catalyst materials and the time needed for the N2 bubbles detachment from the Pt surface under microgravity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afif, A., Radenahmad, N., Cheok, Q., Shams, S., Kim, J.H., Azad, A.K: Ammonia-fed fuel cells: a comprehensive review. Renew. Sust. Energ. Rev. 60, 822–835 (2016). doi:10.1016/j.rser.2016.01.120

    Article  Google Scholar 

  • Balasubramaniam, R., Lacy, C.E., Woniak, G., Subramanian, R.S.: Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity. Phys. Fluids 8(4), 872–880 (1996). doi:10.1063/1.868868

    Article  Google Scholar 

  • Bayer, T., Cunning, B.V., Selyanchyn, R., Daio, T., Nishihara, M., Fujikawa, S., Sasaki, K., Lyth, S.M.: Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide. J. Membr. Sci. 508, 51–61 (2016). doi:10.1016/j.memsci.2016.02.017

    Article  Google Scholar 

  • Bitlloch, P., Ruiz, X., Ramirez-Piscina, L., Casademunt, J.: Turbulent bubble jets in microgravity. Spatial dispersion and velocity fluctuations. Microgravity Sci. Technol. 27(3), 207–220 (2015). doi:10.1007/s12217-015-9436-y

    Article  Google Scholar 

  • Buyevich, Y.A., Webbon, B.W.: Bubble formation at a submerged office in reduced gravity. Chem. Eng. Sci. 51(21), 4843–4857 (1996). doi:10.1016/0009-2509(96)00323-5

    Article  Google Scholar 

  • Buyevich, Y.A., Webbon, B.W.: The isolated bubble regime in pool nucleate boiling. Int. J. Heat Mass Transfer 40(2), 365–377 (1997). doi:10.1016/0017-9310(96)00097-x

    Article  MATH  Google Scholar 

  • Carrera, J., Parthasarathy, R.N., Gollahalli, S.R.: Bubble formation from a free-standing tube in microgravity. Chem. Eng. Sci. 61(21), 7007–7018 (2006). doi:10.1016/j.ces.2006.07.021

    Article  Google Scholar 

  • Cheddie, D.: Ammonia as a hydrogen source for fuel cells: a review. In: Minic, D. (ed.) Hydrogen Energy - Challenges and Perspectives. InTech (2012)

  • Chen, Q., Luo, L., Faraji, H., Feldberg, S.W., White, H.S.: Electrochemical measurements of single h-2 nanobubble nucleation and stability at pt nanoelectrodes. J. Phys. Chem. Lett. 5(20), 3539–3544 (2014). doi:10.1021/jz501898r

    Article  Google Scholar 

  • Chen, Q.J., Wiedenroth, H.S., German, S.R., White, H.S.: Electrochemical nucleation of stable n-2 nanobubbles at pt nanoelectrodes. J. Am. Chem. Soc. 137(37), 12064–12069 (2015). doi:10.1021/jacs.5b07147

    Article  Google Scholar 

  • de Vet, S.J., Rutgers, R.: From waste to energy: First experimental Bacterial Fuel Cells onboard the International Space Station. Microgravity Sci. Technol. 19(5-6), 225–229 (2007)

  • Echegoyen, L., Ortiz, A., Chaur, M.N., Palkar, A.J.: Carbon Nano Onions. In: Akasaka, T., Wudl, F., Nagase, S. (eds.) Chemistry of Nanocarbons. doi:10.1002/9780470660188.ch19. Wiley, Chichester (2010)

    Google Scholar 

  • Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., Winiwarter, W.: How a century of ammonia synthesis changed the world. Nat. Geosci. 1(10), 636–639 (2008). doi:10.1038/ngeo325

    Article  Google Scholar 

  • Fernandez, D., Maurer, P., Martine, M., Coey, J.M.D., Moebius, M.E.: Bubble formation at a Gas-Evolving microelectrode. Langmuir 30(43), 13065–13074 (2014). doi:10.1021/la500234r

    Article  Google Scholar 

  • Gerischer, H., Mauerer, A.: Untersuchungen Zur Anodischen Oxidation von Ammoniak an Platin-Elektroden. J. Electroanal. Chem. 25(3), 421–433 (1970)

    Article  Google Scholar 

  • Herman, C., Iacona, E., Foldes, I.B., Suner, G., Milburn, C.: Experimental visualization of bubble formation from an orifice in microgravity in the presence of electric fields. Exp. Fluids 32(3), 396–412 (2002). doi:10.1007/s003480100366

    Article  Google Scholar 

  • Kaneko, H., Tanaka, K., Iwasaki, A., Abe, Y., Negishi, A., Kamimoto, M.: Water electrolysis under microgravity condition by parabolic flight. Electrochim. Acta 38(5), 729–733 (1993). doi:10.1016/0013-4686(93)80245-u

    Article  Google Scholar 

  • Kannan, M.V., Kumar, G.G.: Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications. Biosens. Bioelectron. 77, 1208–1220 (2016). doi:10.1016/j.bios.2015.10.018

    Article  Google Scholar 

  • Martinez-Rodriguez, R.A., Vidal-Iglesias, F.J., Solla-Gullon, J., Cabrera, C.R., Feliu, J.M.: Synthesis and Electrocatalytic Properties of h2SO4-induced (100) Pt Nanoparticles Prepared in Water-in-Oil Microemulsion. Chem. Phys. Chem. 15(10), 1997–2001 (2014a). doi:10.1002/cphc.201400056

  • Martinez-Rodriguez, R.A., Vidal-Iglesias, F.J., Solla-Gullon, J., Cabrera, C.R., Feliu, J.M.: Synthesis of Pt Nanoparticles in Water-in-Oil Microemulsion: Effect of HCl on Their Surface Structure. J. Am. Chem. Soc. 136(4), 1280–1283 (2014b). doi:10.1021/ja411939d

  • Nicolau, E., Poventud-Estrada, C.M., Arroyo, L., Fonseca, J., Flynn, M., Cabrera, C.R.: Microgravity effects on the electrochemical oxidation of ammonia: a parabolic flight experiment. Electrochim. Acta 75, 88–93 (2012). doi:10.1016/j.electacta.2012.04.079

    Article  Google Scholar 

  • Radenahmad, N., Afif, A., Petra, P.I., Rahman, S.M.H., Eriksson, S. -G., Azad, A.K.: Proton-conducting electrolytes for direct methanol and direct urea fuel cells - a state-of-the-art review. Renew. Sust. Energ. Rev. 57, 1347–1358 (2016). doi:10.1016/j.rser.2015.12.103

    Article  Google Scholar 

  • Santiago, D., Rodriguez-Calero, G.G., Palkar, A., Barraza-Jimenez, D., Galvan, D.H., Casillas, G., Mayoral, A., Jose-Yacaman, M., Echegoyen, L., Cabrera, C.R.: Platinum electrodeposition on unsupported carbon Nano-Onions. Langmuir 28(49), 17202–17210 (2012). doi:10.1021/la3031396

    Article  Google Scholar 

  • Sonoyama, N.: Effect of micro gravity on the product selectivity of dichlorodifluoromethane electrolysis at metal supported gas diffusion electrodes. Microgravity Sci Technol. 19(1), 22–24 (2007). doi:10.1007/bf02870985

    Article  Google Scholar 

  • Thompson, R.L., DeWitt, K.J., Labus, T.L.: Marangoni bubble motion phenomenon in zero gravity. Chem. Eng. Commun. 5(5-6), 299–314 (1980). doi:10.1080/00986448008935971

    Article  Google Scholar 

  • Warshay, M., Prokopius, P.R.: The fuel cell in space: yesterday, today and tomorrow Retrieved from http://ntrs.nasa.gov/search.jsp?R=19900002488 (1989)

  • Yang, X., Karnbach, F., Uhlemann, M., Odenbach, S., Eckert, K.: Dynamics of single hydrogen bubbles at a platinum microelectrode. Langmuir 31(29), 8184–8193 (2015). doi:10.1021/acs.langmuir.5b01825

    Article  Google Scholar 

  • Zhao, Y., Cho, S.K.: Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles. Lab Chip. 7(2), 273–280 (2007). doi:10.1039/B616845K

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the NASA-MIRO Center for Advanced Nanoscale Materials at the University of Puerto Rico-Río Piedras Campus Grant number NNX10AQ17A and NASA-EPSCoR grant number NNX14AN18A, Puerto Rico NASA Space Grant Consortium: NASA cooperative agreement NNX10AM80H, NASA Flight Opportunities Program Announcement of Flight Opportunities (AFO) NOCT110 call #5 and Ministerio de Economía y Competitividad (projects CTQ2013-44083-P and CTQ2013-48280-C3-3-R). Also I want to say thanks to Robert Roe, Dominic Del Rosso and Terry Lee from the NASA Flight Opportunities Program, their support was immensely important to the success of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Cabrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acevedo, R., Poventud-Estrada, C.M., Morales-Navas, C. et al. Chronoamperometric Study of Ammonia Oxidation in a Direct Ammonia Alkaline Fuel Cell under the Influence of Microgravity. Microgravity Sci. Technol. 29, 253–261 (2017). https://doi.org/10.1007/s12217-017-9543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9543-z

Keywords

Navigation