Skip to main content
Log in

Influence of Buoyancy Force on Thermocapillary Convection Instability in the Differentially Heated Annular Pools of Silicon Melt

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The influence of buoyancy force on the thermocapillary convection instability in the annular pools (R i = 20 mm, R o = 40 mm, and depth d ranging from 1 to 10 mm) of silicon melt (Pr = 0.011), differentially heated at the outer wall and cooled at the inner wall, is investigated numerically. The critical Marangoni numbers (Ma c) for the incipience of oscillatory flow are determined by linear stability analysis (LSA) under both microgravity and normal gravity conditions. The results indicate that the buoyancy force destabilizes the thermocapillary convection under different liquid layer depths from 3 to 10 mm. With increasing the layer depth, the critical Ma number, critical azimuthal wave number and critical phase velocity decrease. Some of 3-D simulation results are compared with those of LSA. 3-D results are found consistent with the LSA results except for a case of D = 0.05 where 3-D simulation gives a stationary 3-D flow under a large Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azami, T., Nakamura, S., Eguchi, M., Hibiya, T.: The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt. J. Cryst. Growth 233, 99–107 (2001)

    Article  Google Scholar 

  • Ermakov, M.K., Ermakova, M.S.: Linear-stability analysis off thermocapillary convection in liquid bridges with highly deformed free surface. J. Cryst. Growth 266, 160–166 (2004)

    Article  Google Scholar 

  • Hoyas, S., Herrero, H., Mancho, A.M.: Bifurcation diversity of dynamic thermocapillary liquid layers. Phys. Rev., E 66, 057301 (2002a)

    Article  Google Scholar 

  • Hoyas, S., Herrero, H., Mancho, A.M.: Thermal convection in a cylindrical annulus heated laterally. J. Phys. A: Math. Gen. 35, 4067–4083 (2002b)

    Article  MATH  MathSciNet  Google Scholar 

  • Hoyas, S., Mancho, A.M., Herrero, H., Garnier, N., Chiffaudel, A.: Bénard–Marangoni convection in a differentially heated cylindrical cavity. Phys. Fluids 17, 054104 (2005)

    Article  Google Scholar 

  • Kakimoto, K., Ozoe, H.: Heat and mass transfer during crystal growth. Comput. Mater. Sci. 10, 127–133 (1998)

    Article  Google Scholar 

  • Li, Y.-R., Imaishi, N., Azami, T., Hibiya, T.: Three-dimensional oscillatory flow in a thin annular pool of silicon melt. J. Cryst. Growth 260, 28–42 (2004)

    Article  Google Scholar 

  • Miller, D.C., Pernell, T.L.: Fluid flow patterns in a simulated garnet melt. J. Cryst. Growth 58, 253–260 (1982)

    Article  Google Scholar 

  • Peng, L., Li, Y.-R., Shi, W.Y., Imaishi, N.: Three-dimensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool. Int. J. Heat Mass Transfer 50, 872–880 (2007)

    Article  MATH  Google Scholar 

  • Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  • Schwabe, D.: Buoyant-thermocapillary-and-pure thermocapillary convective instabilities in Czochralski systems. J. Cryst. Growth 237–239, 1849–1853 (2002)

    Article  Google Scholar 

  • Schwabe, D., Benz, S.: Thermocapillary flow instabilities in an annulus under microgravity—results of the experiment magia. Adv. Space Rec. 29, 629–638 (2002)

    Article  Google Scholar 

  • Schwabe, D., Zebib, A., Sim, B.-C.: Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. J. Fluid Mech. 491, 239–258 (2003)

    Article  MATH  Google Scholar 

  • Shevtsova, V.: Thermal convection in liquid bridges with curved free surfaces: benchmark of numerical solutions. J. Cryst. Growth 280, 632–651 (2005)

    Article  Google Scholar 

  • Shi, W.Y., Imaishi, N.: Hydrothermal waves in differentially heated shallow annular pools of silicone oil. J. Cryst. Growth 290, 280–291 (2006)

    Article  Google Scholar 

  • Shi, W.Y., Ermakov, M.K., Imaishi, N.: Effect of pool rotation on thermocapillary convection in shallow annular pool of silicone oil. J. Cryst. Growth 294, 474–485 (2006)

    Article  Google Scholar 

  • Sim, B.-C., Zebib, A.: Thermocapillary convection in cylindrical liquid bridges and annuli. Comptes Rendus Mecanique 332, 473–486 (2004)

    Article  Google Scholar 

  • Sim, B.C., Zebib, A., Schwabe, D.: Oscillatory thermocapillary convection in open cylindrical annuli, part 2 simulations. J. Fluid Mech. 491, 259–274 (2003)

    Article  MATH  Google Scholar 

  • Wanschura, M., Shevtsova, V.M., Kuhlmann, H.C., Rath, H.J.: Convective instability mechanisms in thermocapillary liquid bridges. Phys. Fluids 7, 912–925 (1995)

    Article  MATH  Google Scholar 

  • Yi, K.-W., Kakimoto, K., Eguchi, M., Watanabe, M., Shyo, T., Hibiya, T.: Spoke patterns on molten silicon in Czochralski system. J. Cryst. Growth 144, 20–28 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanyuan Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, W., Ermakov, M.K., Li, YR. et al. Influence of Buoyancy Force on Thermocapillary Convection Instability in the Differentially Heated Annular Pools of Silicon Melt. Microgravity Sci. Technol. 21 (Suppl 1), 289–297 (2009). https://doi.org/10.1007/s12217-009-9118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-009-9118-8

Keywords

Navigation