Skip to main content
Log in

A criterion for the normality of unbounded operators and applications to self-adjointness

  • Published:
Rendiconti del Circolo Matematico di Palermo (1952 -) Aims and scope Submit manuscript

Abstract

In this paper, we give and prove a criterion for the normality of unbounded closed operators, which is a sort of a maximality result which will be called “double maximality”. As applications, we show, under some assumptions, that the sum of two symmetric operators is essentially self-adjoint; and that the sum of two unbounded normal operators is essentially normal. Some other important results are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Kosaki [8] gave explicit examples of unbounded densely defined self-adjoint positive operators \(A\) and \(B\) such that \(D(A)\cap D(B)=\{0\}\).

References

  1. Chernoff, P.R.: A semibounded closed symmetric operator whose square has trivial domain. Proc. Am. Math. Soc. 89(2), 289–290 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Conway, J.B.: A course in functional analysis. In: GTM, vol. 68, 2nd edn. Springer, Berlin (1990)

  3. Devinatz, A., Nussbaum, A.E., von Neumann, J.: On the permutability of self-adjoint operators. Ann. Math. (2) 62, 199–203 (1955)

    Article  MATH  Google Scholar 

  4. Dixmier, J.: L’adjoint du Produit de Deux Opérateurs Fermés. Annales de la faculté des sciences de Toulouse 4ème Série 11, 101–106 (1947)

    Article  MathSciNet  Google Scholar 

  5. Fuglede, B.: Conditions for two self-adjoint operators to commute or to satisfy the Weyl relation. Math. Scand. 51(1), 163–178 (1982)

    MATH  MathSciNet  Google Scholar 

  6. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Basic Classes of Linear Operators. Birkhäuser Verlag, Basel (2003)

    Book  MATH  Google Scholar 

  7. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1980)

    MATH  Google Scholar 

  8. Kosaki, H.: On intersections of domains of unbounded positive operators. Kyushu J. Math. 60(1), 3–25 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mortad, M.H.: On the adjoint and the closure of the sum of two unbounded operators. Can. Math. Bull. 54(3), 498–505 (2011). doi:10.4153/CMB-2011-041-7

    Article  MATH  MathSciNet  Google Scholar 

  10. Mortad, M.H.: On the normality of the sum of two normal operators. Complex Anal. Oper. Theory 6(1), 105–112 (2012). doi:10.1007/s11785-010-0072-7

    Article  MATH  MathSciNet  Google Scholar 

  11. Naimark, M.: On the square of a closed symmetric operator. Dokl. Akad. Nauk SSSR 26, 866–870 (1940). (ibid. 28 (1940), 207–208)

    MATH  Google Scholar 

  12. Nelson, E.: Analytic vectors. Ann. Math. (2) 70, 572–615 (1959)

    Article  MATH  Google Scholar 

  13. Nussbaum, A.E.: A commutativity theorem for unbounded operators in Hilbert space. Trans. Am. Math. Soc. 140, 485–491 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nussbaum, A.E.: A commutativity theorem for semibounded operators in Hilbert space. Proc. Am. Math. Soc. 125(12), 3541–3545 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Putnam, C.: Commutation Properties of Hilbert Space Operators. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  16. Reed, M., Simon, B.: Methods of modern mathematical physics. In: Fourier Analysis, Self-Adjointness, vol. 2. Academic Press, New York (1975)

  17. Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, NY (1991)

    MATH  Google Scholar 

  18. Schmüdgen, K.: On dmains of powers of closed symmetric operators. J. Oper. Theory 9(1), 53–75 (1983)

    MATH  Google Scholar 

  19. Schmüdgen, K.: Unbounded self-adjoint operators on Hilbert space. In: GTM, vol. 265. Springer, Berlin (2012)

  20. Stochel, J., Szafraniec, F.H.: Domination of unbounded operators and commutativity. J. Math. Soc. Jpn. 55(2), 405–437 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vasilescu, F.H.: Anticommuting selfadjoint operators. Revue Roumaine Math. Pures Appl. 28(1), 76–91 (1983)

    MathSciNet  Google Scholar 

  22. Weidmann, J.: Linear operators in Hilbert spaces (translated from the German by J. Szücs). In: GTM, vol. 68. Srpinger, Berlin (1980)

Download references

Acknowledgments

I would like to thank the referee for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Hichem Mortad.

Additional information

This study was Partially supported by “Laboratoire d’Analyse Mathématique et Applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortad, M.H. A criterion for the normality of unbounded operators and applications to self-adjointness. Rend. Circ. Mat. Palermo 64, 149–156 (2015). https://doi.org/10.1007/s12215-014-0186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-014-0186-2

Keywords

Mathematics Subject Classification

Navigation