Skip to main content
Log in

Design of microgrippers based on amorphous-crystalline TiNiCu alloy with two-way shape memory

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Functional layered composites of the shape memory alloys are recently recognized as promising basic active element for microsystem technology and microrobotics. Amorphous-crystalline TiNiCu alloy ribbons at around 40 μm of thickness with an interface separating the amorphous and crystalline phases into layers were produced by melt spinning technique. It is shown that a decrease in the cooling rate of the melt from 8.9·105 to 4.2·105 K/s leads to an increase in the thickness of the crystalline layer from 2 to 10 μm. The ratio of the thicknesses of the amorphous dam and crystalline dcr layers was also varied by an electrochemical polishing method. The composite ribbons have exhibited the two-way shape memory effect (TWSME) of thermal induced bending deformation without additional thermomechanical training. It was established that when the ratio dcr/dam is changed from 0.06 to 0.35, the minimum bending radius of the ribbon decreases from 37.1 to 6.3 mm, and the maximum reversible strain increases by 0.05% to 0.27%. The minimum time of the shape recovery of the composite ribbons when heated by an electric current pulse was 14 ms, and the force generated by the ribbon with a length of 3 mm in bending reached 1.2 mN. A series of the microgrippers (microtweezers) were fabricated on the basis of the composite ribbons with TWSME. Complete technological process of manipulating graphite filaments with a diameter of 5 to 25 μm using developed microgrippers was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wilson SA, Jourdain RPJ, Zhang Q et al (2007) New materials for micro-scale sensors and actuators. An engineering review. Mater Sci Eng R Rep 56:1–129. https://doi.org/10.1016/j.mser.2007.03.001

    Article  Google Scholar 

  2. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50:511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  3. Sun Q-P, Matsui R, Takeda K, Pieczyska EA (eds) (2005) Advances in shape memory materials. Springer, Cham

    Google Scholar 

  4. Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  5. Ashwin R, Srinivasa AR, Reddy JN (2017) Design of Shape Memory Alloy (SMA) actuators. Springer International Publishing, Cham

    Google Scholar 

  6. Tomozawa M, Kim HY, Miyazaki S (2006) Microactuators using R-phase transformation of sputter-deposited Ti-47.3Ni shape memory alloy thin films. J Intell Mater Syst Struct 17:1049–1058. https://doi.org/10.1177/1045389X06064883

    Article  Google Scholar 

  7. Kim B, Lee MG, Lee YP et al (2006) An earthworm-like micro robot using shape memory alloy actuator. Sensors Actuators A Phys 125:429–437. https://doi.org/10.1016/j.sna.2005.05.004

    Article  Google Scholar 

  8. Nespoli A, Besseghini S, Pittaccio S et al (2010) The high potential of shape memory alloys in developing miniature mechanical devices: a review on shape memory alloy mini-actuators. Sensors Actuators A Phys 158:149–160. https://doi.org/10.1016/j.sna.2009.12.020

    Article  Google Scholar 

  9. Kohl M (2010) Shape memory microactuators (microtechnology and MEMS). Springer-Verlag, Berlin

    Google Scholar 

  10. Chan PM, Chung CY, Ng KC (2008) NiTi shape memory alloy thin film sensor micro-array for detection of infrared radiation. J Alloys Compd 449:148–151. https://doi.org/10.1016/j.jallcom.2006.01.119

    Article  Google Scholar 

  11. Bellouard Y (2008) Shape memory alloys for microsystems: a review from a material research perspective. Mater Sci Eng A 481–482:582–589. https://doi.org/10.1016/j.msea.2007.02.166

    Article  Google Scholar 

  12. Lega P, Koledov V, Orlov A et al (2017) Composite materials based on shape-memory Ti2NiCu alloy for frontier micro- and Nanomechanical applications. Adv Eng Mater 19:1700154. https://doi.org/10.1002/adem.201700154

    Article  Google Scholar 

  13. Irzhak A, Koledov V, Zakharov D et al (2014) Development of laminated nanocomposites on the bases of magnetic and non-magnetic shape memory alloys: towards new tools for nanotechnology. J Alloys Compd 586:S464–SS46. https://doi.org/10.1016/j.jallcom.2012.10.119

    Article  Google Scholar 

  14. Irzhak AV, Zakharov DI, Kalashnikov VS et al (2010) Actuators based on composite material with shape-memory effect. J Commun Technol Electron 55:818–830. https://doi.org/10.1134/S1064226910070120

    Article  Google Scholar 

  15. Zakharov D, Lebedev G, Irzhak A et al (2012) Submicron-sized actuators based on enhanced shape memory composite material fabricated by FIB-CVD. Smart Mater Struct 21:052001 (8 pp.). https://doi.org/10.1088/0964-1726/21/5/052001

    Article  Google Scholar 

  16. Zhao H, Chang M, Liu X et al (2014) Design and implementation of shape memory alloy-actuated nanotweezers for nanoassembly. J Micromech Microeng 24:095012 (8 pp.). https://doi.org/10.1088/0960-1317/24/9/095012

    Article  Google Scholar 

  17. Briston KJ, Cullis AG, Inkson BJ (2010) Fabrication of a novel SEM microgripper by electrochemical and FIB techniques. J Micromech Microeng 20:015028 (5 pp.). https://doi.org/10.1088/0960-1317/20/1/015028

    Article  Google Scholar 

  18. Chang J, Min BK, Kim J et al (2009) Electrostatically actuated carbon nanowire nanotweezers. Smart Mater Struct 18:065017 (7 pp.). https://doi.org/10.1088/0964-1726/18/6/065017

    Article  Google Scholar 

  19. Shelyakov A, Sitnikov N, Saakyan S et al (2013) Study of two-way shape memory behavior of amorphous-crystalline TiNiCu melt-spun ribbons. Mater Sci Forum 738–739:352–356. https://doi.org/10.4028/www.scientific.net/msf.738-739.352

    Article  Google Scholar 

  20. Fu YQ, Luo JK, Flewitt AJ et al (2007) Microactuators of free-standing TiNiCu films. Smart Mater Struct 16:2651–2657. https://doi.org/10.1088/0964-1726/16/6/070

    Article  Google Scholar 

  21. Shelyakov AV, Sitnikov NN, Menushenkov AP et al (2013) Fabrication and characterization of amorphous-crystalline TiNiCu melt-spun ribbons. J Alloys Compd 577:S251–S254. https://doi.org/10.1016/j.jallcom.2012.02.146

    Article  Google Scholar 

  22. Freed Y, Aboudi J (2009) Micromechanical prediction of the two-way shape memory effect in shape memory alloy composites. Int J Solids Struct 46:1634–1647. https://doi.org/10.1016/j.ijsolstr.2008.12.004

    Article  MATH  Google Scholar 

  23. Shelyakov AV, Sitnikov NN, Koledov VV et al (2011) Melt-spun thin ribbons of shape memory TiNiCu alloy for micromechanical applications. Int J Smart Nano Mater 2:68–77. https://doi.org/10.1080/19475411.2011.567305

    Article  Google Scholar 

  24. Potapov PL, Kulkova SE, Shelyakov AV et al (2003) Crystal structure of orthorhombic martensite in TiNi-cu and TiNi-Pd intermetallics. J Phys IV 112:727–730. https://doi.org/10.1051/jp4:2003985

    Article  Google Scholar 

  25. Morgiel J, Cesari E, Pons J et al (2002) Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons. J Mater Sci 37:5319–5325. https://doi.org/10.1023/A:1021077025254

    Article  Google Scholar 

  26. Shelyakov AV, Sitnikov NN, Menushenkov AP et al (2011) Nanostructured thin ribbons of a shape memory TiNiCu alloy. Thin Solid Films 519:5314–5317. https://doi.org/10.1016/j.tsf.2011.01.118

    Article  Google Scholar 

  27. Chang SH, Wu SK, Kimura H (2007) Annealing effects on the crystallization and shape memory effect of Ti50Ni25Cu25 melt-spun ribbons. Intermetallics 15:233–240. https://doi.org/10.1016/j.intermet.2006.05.014

    Article  Google Scholar 

  28. Moon PS, Hee OJ, Wook KY, Hyun NT (2006) Microstructures and mechanical properties of Ti-25Ni-25Cu (at.%) alloy ribbons. Mater Sci Eng A 438–440:695–698. https://doi.org/10.1016/j.msea.2006.02.186

    Article  Google Scholar 

  29. Shelyakov AV, Matveeva NM, Larin SG (1999) Rapidly quenched TiNi-based shape memory alloys. In: Trochu F, Brailovski V (eds) Shape memory alloys: fundamentals, modeling and industrial applications. Canadian Inst. of Mining, Metallurgy and Petrolium, pp 295–303

  30. Bhattacharyya A, Lagoudas DC, Wang Y, Kinra VK (1995) On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment. Smart Mater Struct 4:252–263. https://doi.org/10.1088/0964-1726/4/4/005

    Article  Google Scholar 

  31. Dutta SM, Ghorbel FH (2005) Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Trans Mechatron 10:189–197. https://doi.org/10.1109/TMECH.2005.844709

    Article  Google Scholar 

  32. Vasina M, Solc F, Hoder K (2003) Shape memory alloys - unconventional actuators. In: Proceedings of the IEEE International Conference on Industrial Technology. pp 190–193

Download references

Acknowledgments

This work was supported by the Russian Science Foundation Grant No. 17-19-01748. The study of I. Khabibullina was supported by the Russian Foundation for Basic Research, project no. 18-32-00866\18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Shelyakov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelyakov, A., Sitnikov, N., Borodako, K. et al. Design of microgrippers based on amorphous-crystalline TiNiCu alloy with two-way shape memory. J Micro-Bio Robot 16, 43–51 (2020). https://doi.org/10.1007/s12213-020-00126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-020-00126-3

Keywords

Navigation