Skip to main content
Log in

Weathering of evaporites: natural versus anthropogenic signature on the composition of river waters

  • Water and soil pollution in Italy
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Weathering of evaporites strongly influences the chemistry of continental runoff, making surface waters poorly exploitable for civil uses. In south-central Sicily, this phenomenon is worsened by the occurrence of abandoned landfills of old sulphur and salt mines. The industrial evolution of the Bosco-S. Cataldo mining site leaved two landfills from the early exploitation of a sulphur mine followed by that of a kainite deposit. In particular, the weathering of these landfills leads the dissolved salt (TDS) values up to about 200 g l−1 in the Stincone–Salito Stream waters. This process induces the V, Cr and Fe desorption from sediments and particulates in the aqueous phase under reducing conditions. At the same time, the weathering of salt minerals releases Rb and Cs, originally contained in halite. The overall processes lead to the V, Cr, Fe, Rb and Cs enrichment of waters from the Stincone–Salito Stream system accompanied by a sharp growth of As content, up to about 13 µg l−1, caused by As release from Fe-bearing solids due to the high salinity. Therefore, the scenario of the weathering of Bosco-S. Cataldo mine landfills depicts an environment strongly influenced by effects of the growing salinity and euxinic water conditions where the attained TDS, Eh and pH conditions reduce the natural scavenging capability of the interested river system, favouring a growth of residence time of toxic elements in river waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angle CW, Dabros T (2013) Grosmont dolomite cores from various formation depths after bitumen extraction: dissolution in brine and interfacial properties as a function of common lattice ion and pH. Energy Fuels 27:3050–3060

    Article  CAS  Google Scholar 

  • Bellanca A, Neri R (1993) Dissolution and precipitation of gypsum and carbonate minerals in soils on evaporite deposits, central Sicily: isotope geochemistry and microfabric analysis. Geoderma 59:263–277

    Article  CAS  Google Scholar 

  • Bordi I, Fraedrich I, Gerstengarbe KFC, Werner PC, Sutera A (2004) Potential predictability of dry and wet periods: sicily and Elbe-Basin (Germany). Theoret Appl Climatol 77(3–4):125–138

    Google Scholar 

  • Boschetti T, Toscani L, Shouakar-Stash O, Iacumin P, Venturelli G, Mucchino C, Frape SK (2011) Salt waters of the northern Apennine foredeep basin (Italy): origin and evolution. Aquat Geochem 17:71–108

    Article  CAS  Google Scholar 

  • Bruland KW, Middag R, Lohan MC (2013) Controls of trace metals in seawater. In: Treatise on geochemistry: 2nd Edition, 8, pp 19–51

  • Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the race metal chemistry of oceanic suspended matter. Earth Plan Sci Lett 42:399–411

    Article  CAS  Google Scholar 

  • Celle-Jeanton H, Huneau F, Travi Y, Edmunds WM (2009) Twenty years of groundwater evolution in the Triassic sandstone aquifer of Lorraine: impacts on baseline water quality. Appl Geochem 24:1198–1213

    Article  CAS  Google Scholar 

  • Censi P, Sprovieri M, Saiano F, Di Geronimo SI, Larocca D, Placenti F (2007) The behaviour of REEs in Thailand’s Mae Klong estuary: suggestions from the Y/Ho ratios and lanthanide tetrad effects. Estuar Coast Shelf Sci 71:569–579

    Article  Google Scholar 

  • Cita MB (1976) Biodynamic effects of the messinian salinity crisis on the evolution of planktonic foraminifera in the mediterranean. Palaeogeogr Palaeoclimatol Palaeoecol 20:23–42

    Article  Google Scholar 

  • Decima A, Wezel FC (1973) Late Miocene evaporites of the central Sicilian basin, Italy. In: Ryan WBF, Hsu KJ, Dumitrica P, Lort JM, Maync W, Nesteroff WD, Pautot G, Stradner H, Wezel FC (Eds.), Initial Reports of the Deep Sea Drilling Project, Volume XIIIU.S. Government Printing Office, Washington, pp 1234–1241

  • Dessau G, Jensen ML, Nakai N (1962) Geology and isotopic studies of sicilian sulfur deposits. Econ Geol 57:410–438

    Article  CAS  Google Scholar 

  • Dzomback DA, Morel FMM (1990) Surface complexation modelling. Wiley, New York

    Google Scholar 

  • Erickson BE, Helz GR (2000) Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolybdates. Geochim Cosmochim Acta 64(7):1149–1158

    Article  CAS  Google Scholar 

  • Favara R, Grassa F, Valenza M (2000) Hydrogeochemical evolution and environmental features of salso River catchment, central Sicily (Italy). Environ Geol 39:1205–1215

    Article  CAS  Google Scholar 

  • Fdez-Ortiz de Vallejuelo S, Gredilla A, de Diego A, Arana G, Madariaga JM (2014) Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics. Sci Total Environ 473–474:359–371

    Article  Google Scholar 

  • Gaillardet J, Viers J, Dupré B (2014) Trace Elements in River Waters. In: Drever J (Ed.) Treatise on Geochemistry (7), 2nd edn. Elsevier, pp 195–235

  • Helz GR, Miller CR, Charnock JM, Mosselmans JFW, Pattrick RAD, Garner CD, Vaughan DJ (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim Cosmochim Acta 60:3631–3642

    Article  CAS  Google Scholar 

  • Hsü KJ, Ryan WBF, Cita MB (1973) Late miocene desiccation of the mediterranean. Nature 242(5395):240–244

    Article  Google Scholar 

  • Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198(3–4):331–351

    Article  CAS  Google Scholar 

  • Kosmulski M (2012) IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides. Adv Colloid Interface Sci 171–172:77–86

    Article  Google Scholar 

  • Manzi V, Lugli S, Roveri M, Schreiber BC (2009) A new facies model for the Upper Gypsum of Sicily (Italy): chronological and palaeoenvironmental constraints for the Messinian salinity crisis in the Mediterranean. Sedimentology 56:1937–1960

    Article  CAS  Google Scholar 

  • Mathurin FA, Drake H, Tullborg EL, Berger T, Peltola P, Kalinowski BE, Åström ME (2014) High cesium concentrations in groundwater in the upper 1.2 km of fractured crystalline rock—influence of groundwater origin and secondary minerals. Geochim Cosmochim Acta 132:187–213

    Article  CAS  Google Scholar 

  • Möller P, Geyer S, Salameh E, Dulski P (2006) Sources of mineralization and salinization of thermal groundwater of Jordan. Acta Hydroch Hydrob 34:86–100

    Article  Google Scholar 

  • Möller P, Rosenthal E, Geyer S, Guttman J, Dulski P, Rybakov M, Zilberbrand M, Jahnke C, Flexer A (2007) Hydrochemical processes in the lower Jordan valley and in the Dead Sea area. Chem Geol 239:27–49

    Article  Google Scholar 

  • Möller P, Rosenthal E, Flexer A (2014) The hydrogeochemistry of subsurface brines in and west of the Jordan-Dead Sea Transform fault. Geofluids 14:291–309

    Article  Google Scholar 

  • O’Connor AE, Luek JL, McIntosh H, Beck AJ (2015) Geochemistry of redox-sensitive trace elements in a shallow subterranean estuary. Mar Chem 172:70–81

    Article  Google Scholar 

  • Osichkina RG (2006) Regularities of trace element distribution in water-salt systems as indicators of the genesis of potassium salt rocks: an example from the Upper Jurassic halogen formation of Central Asia. Geochem Int 44:164–174

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2010) PHREEQC-2 Version 2.17.01

  • Pourret O, Dia A, Gruau G, Davranche M, Bouhnik-Le Coz M (2012) Assessment of vanadium distribution in shallow groundwaters. Chem Geol 294–295:89–102

    Article  Google Scholar 

  • Qin F, Ji H, Li Q, Guo X, Tang L, Feng J (2014) Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J Geochem Explor 138:33–49

    Article  CAS  Google Scholar 

  • Rouchy JM, Caruso A (2006) The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sed Geol 188–189:35–67

    Article  Google Scholar 

  • Rouchy JM, Orszag-Sperber F, Blanc-Valleron MM, Pierre C, Rivière M, Combourieu-Nebout N, Panayides I (2001) Paleoenvironmental changes at the Messinian–Pliocene boundary in the Eastern Mediterranean (southern Cyprus basins): significance of the Messinian Lago-Mare. Sed Geol 145:93–117

    Article  CAS  Google Scholar 

  • Schock HH, Puchelt H (1971) Rubidium and cesium distribution in salt minerals—part I. Experimental investigations. Gechim Cosmochim Acta 35:307–317

    Article  CAS  Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1:1–34

    Article  CAS  Google Scholar 

  • Sholkovitz E, Szymczak R (2000) The estuarine chemistry of rare earth elements: comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems. Earth Planet Sci Lett 179:299–309

    Article  CAS  Google Scholar 

  • ARPA Sicilia (2007) Piano di monitoraggio per la prima caratterizzazione dei corpi idrici superficiali della Regione Siciliana. REGIONE SICILIA 2007

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    Article  CAS  Google Scholar 

  • Takata H, Aono T, Tagami K, Uchida S (2012) Influence of dissolved organic matter on particle-water interactions of Co, Cu and Cd under estuarine conditions. Estuar Coast Shelf Sci 111:75–83

    Article  CAS  Google Scholar 

  • Vengosh A (2013) Salinization and saline environments, in treatise on geochemistry: Second Edition, edited, pp 325–378

  • Vergouw JM, Difeo A, Xu Z, Finch JA (1998) An agglomeration study of sulphide minerals using zeta potential and settling rate. Part II: sphalerite/pyrite and sphalerite/galena. Miner Eng 11(7):605–614

    Article  CAS  Google Scholar 

  • WHO (1993) Guidelines for drinking-water quality, vol 1. Recommendations WHO, Geneva

    Google Scholar 

  • Wright MT, Belitz K (2010) Factors controlling the regional distribution of vanadium in groundwater. Gr Water 48(4):515–525

    Article  CAS  Google Scholar 

  • Yechieli Y (2000) Fresh-saline ground water interface in the western dead sea area. Groundwater 38:615–623

    Article  CAS  Google Scholar 

  • Yechieli Y, Ronen D (1996) Self-diffusion of water in a natural hypersaline solution (Dead Sea brine). Geophys Res Lett 23:845–848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted with Dr. Sabrina Chiavetta (Sidercem S.R.L.) who performed SEM images and analyses. We acknowledge the financial supports from the BENEFICENTIA Stiftung Foundation (Vaduz, Liechtenstein) and University of Palermo (Grant No. PJAUTF005478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Censi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Censi, P., Sposito, F., Inguaggiato, C. et al. Weathering of evaporites: natural versus anthropogenic signature on the composition of river waters. Rend. Fis. Acc. Lincei 27, 29–37 (2016). https://doi.org/10.1007/s12210-015-0466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-015-0466-6

Keywords

Navigation