Skip to main content
Log in

Poly-3-hydroxybutyrate (PHB) production by Bacillus flexus ME-77 using some industrial wastes

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

In this study, 50 bacterial strains were screened for polyhydroxyalkanoate (PHA) production. The isolated bacterial strain Bacillus flexus ME-77 was found to be the most potent PHA producer. The extracted PHA was analyzed using NMR techniques, which showed that it is of the polyhydroxybutyrate (PHB) type. The highest PHB production (4.5 g/L) was achieved using 30 g/L sugarcane molasses (SCM) at pH 7.5 and applying 1, 0.2 and 0.03 g/L of phosphate, MgSO4 7H2O and CaCl2, respectively, at 27 °C incubation temperature and 200 rpm agitation speed. The bacterial strain Bacillus flexus ME-77 with its potential could be further explored for cost-effective production of PHAs using low-cost agro-industrial food wastes such as sugarcane molasses as a low-cost sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akar A, Akkaya E, Yesiladali S et al (2006) Accumulation of polyhydroxyalkanoates by Microlunatus phosphovorus under various growth conditions. J Ind Microbiol Biotechnol 33:215–220

    Article  CAS  Google Scholar 

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J ChemTechnol Biotechnol 85:732–743

    Article  CAS  Google Scholar 

  • Anderson A, Dawes E (1990) Occurence, metabolic role and industrial uses of bacterial polyhydroxyalkanolates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  • Atlas R (1993) Microbial ecology: fundamentals and applications, third ed., pp. 39–43. Appl Environ Microbiol 54:2924–2932

    Google Scholar 

  • Ausubel F, Brent R, Kingston R et al (eds) (1999) Short protocols in molecular biology. Willey, NY

    Google Scholar 

  • Benoit T, Wilson G, Baygh C (1990) Fermentation during growth and sporulation of Bacillus thuringiensis HD-1. J Appl Microbiol 10:15–18

    Article  CAS  Google Scholar 

  • Berlanga M, Montero M, Fernandez-Borrell J, Guerrero R (2006) Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. Int Microbiol 9:95–102

    CAS  Google Scholar 

  • Borah B, Thakur P, Nigam J (2002) The influence of nutritional and environmental conditions on the accumulation of poly-hydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    Article  CAS  Google Scholar 

  • Degelau A, Scheper T, Bailey J, Guske C (1995) Fluorometric measurement of poly-β-hydroxybutyrate in Alcaligenes eutrophus by flow cytometry and spectrofluorometry. Appl Environ Microbiol 42:653–657

    CAS  Google Scholar 

  • Divyashree M, Shamala T, Rastogi N (2009a) Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioprocess Eng 14:482–489

    Article  CAS  Google Scholar 

  • Divyashree M, Navin K, Shamala T (2009b) A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. New Biotechnol 26:92–98

    Article  CAS  Google Scholar 

  • Findlay R, White D (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45:71–78

    CAS  Google Scholar 

  • Freeman M, Baehler C, Spotts S (1990) Automated lazer fluorescence sequencing. Biotechnology 8:147–148

    Article  CAS  Google Scholar 

  • Gorenflo V, Steinbüchel A, Marose S et al (1999) Quantification of bacterial polyhydroxy-alkanoic acids by Nile red staining. Appl Microbiol Biotechnol 51:765–772

    Article  CAS  Google Scholar 

  • Gouda M, Swellam A, Omar S (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen source. Microbiol Res 156:201–207

    Article  CAS  Google Scholar 

  • Ha C, Cho W (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27:759–809

    Article  CAS  Google Scholar 

  • Halami P (2007) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812

    Article  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Huang SJ (2002) An Overview of Biodegradable Polymers and Biodegradation of Polymers. In: Scott G (ed) Degradable polymers, principles and applications. Springer, Berlin, pp 17–26

    Chapter  Google Scholar 

  • Johnstone B (1990) A throw away answer. Far East Econ Rev 147:62–63

    Google Scholar 

  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxy-alkanoates. Crit Rev Microbiol 31:55–67

    Article  CAS  Google Scholar 

  • Kim Y, Lenz R (2001) Polyesters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79

    CAS  Google Scholar 

  • Klüttermann K, Tauchert H, Kleber H (2002) Synthesis of poly-β-hydroxybutyrate by Agrobacterium radiobacter after growth on d-Carnitine. Acta Biotechnol 22:261–269

    Article  Google Scholar 

  • Kragelund C, Nielsen J, Thomsen T, Nielsen P (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiol Ecol 54:111–122

    Article  CAS  Google Scholar 

  • Kreig N, Holt J (1984) Bergey’s manual of systematic Bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Madison L, Huisman G (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  Google Scholar 

  • Manna A, Banerjee R, Paul A (1999) Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces. Curr Microbiol 39:153–158

    Article  CAS  Google Scholar 

  • Nam D, Ryu D (1985) Relationship between butirosin biosynthesis and sporulation in Bacillus circulans. Antimicrob Agents Chemother 27:789–801

    Google Scholar 

  • Narayan R (1993) Biodegradable plastics. In: Opportunities for innovation in biotechnology—National Institute of Standards and Technology (NIST, U.S. Department of Commerce) Monograph, NIST GCR–93–633, p 135

  • Oderinde R, Ngoka L, Adesogan K (1986) Comparative study of the effect of ferrocyanide and EDTA on the production of ethyl alcohol from molasses by Saccharomyces cerevisiae. Biotechnol Bioeng 28:1156–1162

    Article  Google Scholar 

  • Oliveira F, Freire D, Castilho L (2004) Production of poly (3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnol Lett 26:1851–1855

    Article  CAS  Google Scholar 

  • Page RT (1996) Review: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  Google Scholar 

  • Pal A, Prabhu A, Kumar A et al (2009) Optimization of process parameters for maximum poly-β-hydroxybutyrate (PHB) production by Bacillus thuringiensis IAM 12077. Polish J Microbiol 58:149–154

    CAS  Google Scholar 

  • Pankajakshan D, Agrawal D (2010) Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol 88:855–873

    Article  CAS  Google Scholar 

  • Pfennig N (1974) Rhodopseudomonas globiformis sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206

    Article  CAS  Google Scholar 

  • Priest FG, Goodfellow M, Todd C (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134:1847–1882

    CAS  Google Scholar 

  • Prober J, Trainor G, Dam R, Hobbs F, Robertson C, Zagursky R, Cocuzza A, Jensen M, Baumeister K (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238:336–341

    Article  CAS  Google Scholar 

  • Reddy C, Ghai R, Rashmi, Kalia V (2003) Polyhydroxyalkanoates: an overview. Biores Technol 87:137–146

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning laboratory manual. Cold Spring Harbor Laboratory, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain terminating inhibitors. Proc Nat Acad Sci USA 74:5463–5467

    Article  CAS  Google Scholar 

  • Sivaprakasam S, Mahadevan S, Sekar S, Rajakumar S (2008) Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microb Cell Fact 7:15

    Article  Google Scholar 

  • Slepecky R, Law J (1960) A rapid spectrophotometric assay for alpha, beta-unsaturated acids and beta-hydroxy acids. Anal Chem 32:1697–1699

    Article  CAS  Google Scholar 

  • Spiekermann P, Rehm B, Kalscheuer R et al (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 71:73–80

    Article  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoaic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton Press, New York, pp 123–213

    Google Scholar 

  • Sudesh K, Lwata T (2008) Sustainability of biobased and biodegradable plastics. Clean J 36:433–442

    CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polymer Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Teclu D, Tivchev G, Laing M, Wallis M (2008) Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria. J Hazard Mater 161:1157–1165

    Article  Google Scholar 

  • Tokiwa Y, Calabia B (2007) Biodegradability and biodegradation of polyesters. J Polym Environ 15:259–267

    Article  CAS  Google Scholar 

  • Valappil S, Misra S, Boccaccini A et al (2007) Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterized Bacillus cereus SPV. J Biotechnol 132:251–258

    Article  CAS  Google Scholar 

  • Vijayendra S, Rastogi N, Kumar P et al (2007) Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Ind J Microbiol 47:170–175

    Article  CAS  Google Scholar 

  • Witholt B, Kessler B (2002) Perspectives of medium-chain-length poly (hydroxy-alkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10:279–285

    Article  Google Scholar 

  • Zagar J (2000) The end of cheap conventional oil. The Proceedings of Energy Efficiency Policy Symposium. http://www.hawaii.gov/dbedt/ent/symposium/zagar.pdf

  • Zhang S, Norrlo O, Wawrzynczyk J, Dey E (2004) Poly (3 hydroxybutyrate) biosynthesis in the biofilm of Alcaligenes eutrophus, using glucose enzymatically released from pulp fiber sludge. Appl Environ Microbiol 70:6776–6782

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. El-Sheekh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sheekh, M.M., El-Abd, M.A., El-Diwany, A.I. et al. Poly-3-hydroxybutyrate (PHB) production by Bacillus flexus ME-77 using some industrial wastes. Rend. Fis. Acc. Lincei 26, 109–119 (2015). https://doi.org/10.1007/s12210-014-0368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0368-z

Keywords

Navigation